研究论文

含有二氢吩嗪和蒽醌的双极型分子的合成及其电化学性能研究

  • 李建法 ,
  • 段安 ,
  • 黄晓宇 ,
  • 李永军
展开
  • a 中国科学院上海有机化学研究所 上海 200032
    b 上海科技大学物质科学与技术学院 上海 201210

收稿日期: 2024-07-04

  修回日期: 2024-07-12

  网络出版日期: 2024-07-18

基金资助

国家自然科学基金(52273086); 国家自然科学基金(U22A20131); 上海市国际合作(22520711700)

Synthesis and Electrochemical Study of Bipolar Molecules Containing Dihydrophenazine and Anthraquinone Moieties

  • Jianfa Li ,
  • An Duan ,
  • Xiaoyu Huang ,
  • Yongjun Li
Expand
  • a Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032
    b School of Physical Science & Technology, ShanghaiTech University, Shanghai 201210

Received date: 2024-07-04

  Revised date: 2024-07-12

  Online published: 2024-07-18

Supported by

National Natural Science Foundation of China(52273086); National Natural Science Foundation of China(U22A20131); Shanghai Scientific and Technological Innovation Project(22520711700)

摘要

通过分子设计合成具有高比容量的电化学活性有机分子是有机电极材料的研究热点之一. 利用Buchwald- Hartwig偶联反应合成了同时具有p型二氢吩嗪和n型蒽醌的双极型分子BPZ-AQ和2BPZ-AQ, 其理论比容量分别为230和223 mAh•g-1. 利用吸收光谱和循环伏安法证明了BPZ-AQ和2BPZ-AQ的双极型特性, 其中二氢吩嗪和蒽醌保持各自的电化学活性. 以2BPZ-AQ为正极材料的锂电池的首次放电比容量高达到210 mAh•g-1 (1 C), 为其理论比容量的94%, 200次循环后容量保持60%, 并且具有优异的倍率性能.

本文引用格式

李建法 , 段安 , 黄晓宇 , 李永军 . 含有二氢吩嗪和蒽醌的双极型分子的合成及其电化学性能研究[J]. 有机化学, 2025 , 45(1) : 319 -324 . DOI: 10.6023/cjoc202407011

Abstract

Design and synthesis of electrochemical active molecules with high specific capacity attracted much research attention in the field of organic electrode materials for rechargeable betteries. Two bipolar molecules BPZ-AQ and 2BPZ-AQ which were composed of p-type dihydrophenazine and n-type anthraquinone moieties were synthesized via Buchwald-Hartwig coupling reaction. BPZ-AQ and 2BPZ-AQ could deliver high specific capacity of 230 and 223 mAh•g-1, respectively. Their bipolar-type property was investigated by absorption spectrum and cyclic voltammetry characterization, confirming the electrochemical activity of dihydrophenazine and anthraquinone moieties in the bipolar molecules. 2BPZ-AQ can present a high initial capacity of 210 mAh•g-1 at 1 C corresponding to 94% of its theoretical capacity, good capacity retention (60%) after 200 cycles, and excellent rate performance.

参考文献

[1]
Zhang, S.; Yang, C.; Yang, Y.; Feng, N.; Yang, G. Acta Chim. Sinica 2022, 80, 1269 (in Chinese).
[1]
(张爽, 杨成飞, 杨玉波, 冯宁宁, 杨刚, 化学学报, 2022, 80, 1269.)
[2]
Lauro, S. N.; Burrow, J. N.; Mullins, C. B. eScience 2023, 3, 100152.
[3]
Xue, X.; Zhang, Y.; Shi, M.; Li, T.; Huang, T.; Qi, J.; Wei, F.; Sui, Y.; Jin, Z. Acta Chim. Sinica 2022, 80, 618 (in Chinese).
[3]
(薛晓兰, 张洋, 石美瑜, 李天琳, 黄天龙, 戚继球, 委福祥, 隋艳伟, 金钟, 化学学报, 2022, 80, 618.)
[4]
Liang, Y.; Tao, Z.; Chen, J. Adv. Energy Mater. 2012, 2, 742.
[5]
Zhao, Y.; Xu, N.; Ni, M.; Wang, Z.; Zhu, J.; Liu, J.; Zhao, R.; Zhang, H.; Ma, Y.; Li, C.; Chen, Y. Adv. Mater. 2023, 35, 2211152.
[6]
Esser, B.; Dolhem, F.; Becuwe, M.; Poizot, P.; Vlad, A.; Brandell, D. J. Power Sources 2021, 482, 228814.
[7]
Lu, Y.; Chen, J. Nat. Rev. Chem. 2020, 4, 127.
[8]
Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Chem. Rev. 2020, 120, 6490.
[9]
Lee, S.; Kwon, G.; Ku, K.; Yoon, K.; Jung, S. K.; Lim, H. D.; Kang, K. Adv. Mater. 2018, 30, 1704682.
[10]
Kwon, J. E.; Hyun, C. S.; Ryu, Y. J.; Lee, J.; Min, D. J.; Park, M. J.; An, B. K.; Park, S. Y. J. Mater. Chem. A 2018, 6, 3134.
[11]
Kolek, M.; Otteny, F.; Schmidt, P.; Mück-Lichtenfeld, C.; Einholz, C.; Becking, J.; Schleicher, E.; Winter, M.; Bieker, P.; Esser, B. Energy Environ. Sci. 2017, 10, 2334.
[12]
Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. Science 2015, 350, 938.
[13]
Wu, M.; Zhao, Y.; Zhao, R.; Zhu, J.; Liu, J.; Zhang, Y.; Li, C.; Ma, Y.; Zhang, H.; Chen, Y. Adv. Funct. Mater. 2022, 32, 2107703.
[14]
Zhu, Y.; Yang, F.; Niu, Z.; Wu, H.; He, Y.; Zhu, H.; Ye, J.; Zhao, Y.; Zhang, X. J. Power Sources 2019, 417, 83.
[15]
He, X.; Wei, B.; Tang, W.; Guo, M.; Hu, J.; Lin, Z.; Fan, C. Adv. Funct. Mater. 2024, 34, 2311740.
[16]
Xiao, M.; Gao, X. Chin. J. Org. Chem. 2023, 43, 3246 (in Chinese).
[16]
(肖梦佳, 高希珂, 有机化学, 2023, 43, 3246.)
[17]
Lee, M.; Hong, J.; Lee, B.; Ku, K.; Lee, S.; Park, C. B.; Kang, K. Green Chem. 2017, 19, 2980.
[18]
Huang, B.; Chen, W. C.; Li, Z.; Zhang, J.; Zhao, W.; Feng, Y.; Tang, B. Z.; Lee, C.-S. Angew. Chem., Int. Ed. 2018, 57, 12473.
[19]
Ahn, M.; Kim, M.-J.; Cho, D. W.; Wee, K.-R. J. Org. Chem. 2021, 86, 403.
[20]
Kim, H.; Kwon, J. E.; Lee, B.; Hong, J.; Lee, M.; Park, S. Y.; Kang, K. Chem. Mater. 2015, 27, 7258.
[21]
Lu, Y.; Zhao, Q.; Miao, L.; Tao, Z.; Niu, Z.; Chen, J. J. Phys. Chem. C 2017, 121, 14498.
[22]
Liang, Y.; Zhang, P.; Chen, J. Chem. Sci. 2013, 4, 1330.
[23]
Häupler, B.; Wild, A.; Schubert, U. S. Adv. Energy Mater. 2015, 5, 1402034.
[24]
Su, Y.; Jin, X.; Su, J.; Feng, Y.; Wang, Q.; Zhang, Z.; Tian, H.; Ma, X. Adv. Opt. Mater. 2023, 11, 2300604.
文章导航

/