综述与进展

过渡金属催化氮原子α位Csp3—H键官能团化反应研究进展

  • 张腾飞 ,
  • 常喆 ,
  • 陈春霞 ,
  • 彭进松
展开
  • a 东北林业大学化学化工与资源利用学院 哈尔滨 150040
    b 东北林业大学 黑龙江省合成化学与资源利用创新研究中心(国际合作) 哈尔滨 150040

收稿日期: 2004-04-04

  修回日期: 2024-07-17

  网络出版日期: 2024-07-25

基金资助

中央高校基本科研业务费(2572023CT12); 黑龙江省自然科学基金(LH2022B003); 国家自然科学基金(32370413); 碳中和专项科学基金(HKF221700013)

Progress in Functionalization of N-α-Csp3—H Bond Catalyzed by Transition Metals

  • Tengfei Zhang ,
  • Zhe Chang ,
  • Chunxia Chen ,
  • Jinsong Peng
Expand
  • a College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040
    b Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin 150040

Received date: 2004-04-04

  Revised date: 2024-07-17

  Online published: 2024-07-25

Supported by

Fundamental Research Funds for the Central Universities(2572023CT12); Natural Science Foundation of Heilongjiang Province(LH2022B003); National Natural Science Foundation of China(32370413); Fundamental Research Funds for Carbon Neutrality(HKF221700013)

摘要

在有机合成化学中, C—H键的官能团化是一个十分重要的研究领域. 在众多处于不同化学环境的C—H键中, N-α位的Csp3—H键因氮原子的诱导效应使其相较于其他的Csp3—H键具有更高的反应活性, 并且在导向基团作用下可以更好地实现N-α位Csp3—H键的区域选择性官能团化反应, 因此氮原子α位Csp3—H键官能团化是一种非常实用的合成策略, 这为含有氮原子的有机化合物(如尼可刹米、奎宁等)的结构修饰及药物开发提供了更多可能. 综述了近二十年来过渡金属催化氮原子α位Csp3—H键官能团化的发展现状, 并展望了此方法在有机合成化学中的潜力.

本文引用格式

张腾飞 , 常喆 , 陈春霞 , 彭进松 . 过渡金属催化氮原子α位Csp3—H键官能团化反应研究进展[J]. 有机化学, 2025 , 45(1) : 168 -188 . DOI: 10.6023/cjoc202404040

Abstract

Functionalization of C—H bonds is a very important research field in organic synthetic chemistry. In many C—H bonds located in different chemical environments, the induced effect of the nitrogen atom makes the α-Csp3—H bond more active compared to other Csp3—H bonds, and the regioselective functionalization of the α-Csp3—H bond is also better achieved with the help of directing groups. Therefore, the functionalization of the α-Csp3—H bond of nitrogen atoms is a very practical synthetic strategy, which provides more possibilities for the structural modification and development of drugs containing nitrogen atoms (such as nicotinamide and quinine). The current development of transition metal-catalyzed functionalization of the α-Csp3—H bond of nitrogen atoms in the past twenty years is reviewed and the potential of this synthetic methodology in the future is looked forward.

参考文献

[1]
Gonnard, L.; Guérinot, A.; Cossy, J. Tetrahedron 2019, 75, 145.
[2]
O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435.
[3]
Lorente, A.; Lamariano-Merketegi, J.; Albericio, F.; Álvarez, M. Chem. Rev. 2013, 113, 4567.
[4]
Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
[5]
Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem. 2014, 57, 5845.
[6]
Edwards, P. M.; Schafer, L. L. Chem. Commun. 2018, 54, 12543.
[7]
Paul, A.; Seidel, D. J. Am. Chem. Soc. 2019, 141, 8778.
[8]
Antermite, D.; Bull, J. A. Synthesis 2019, 51, 3171.
[9]
Ye, Z.; Gettys, K. E.; Dai, M. Beilstein J. Org. Chem. 2016, 12, 702.
[10]
Inoue, M.; Tsurugi, H.; Mashima, K. Coord. Chem. Rev. 2022, 473, 214810.
[11]
Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069.
[12]
Chen, W.; Ma, L.; Paul, A.; Seidel, D. Nat. Chem. 2018, 10, 165.
[13]
Cai, X. H.; Yang, M. Z.; Xie, B. Lett. Org. Chem. 2019, 16, 779.
[14]
Antermite, D.; Degennaro, L.; Luisi, R. Org. Biomol. 2017, 15, 34.
[15]
Ping, L.; Chung, D. S.; Bouffard, J.; Lee, S. G. Chem. Soc. Rev. 2017, 16, 4299.
[16]
Hernández, J. G. Chem. Eur. J. 2017, 23, 17157.
[17]
Zhang, Y. H.; Shi, G. F.; Yu, J. Q. Comprehensive Organic Synthesis II 2014, 3, 1101.
[18]
Xie, J.; Zhu, C. Springer Briefs in Molecular Science 2016, 25.
[19]
Beak, P.; Lee, W. K. Tetrahedron Lett. 1989, 3, 1197.
[20]
Jun, C. H.; Hwang, D. C.; Na, S. J. Chem. Commun. 1998, 13, 1405.
[21]
Chatani, N.; Asaumi, T. Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 10935.
[22]
Yi, C. S.; Yun, S. Y.; Guzei, I. A. Organometallics 2004, 23, 5392.
[23]
Schmitt, D. C.; Lee, J.; Dechert-Schmitt.; A, M. R.; Yamaguchi, E.; Krische, M. J. Chem. Commun. 2013, 49, 6096.
[24]
Pastine, S. J.; Gribkov, D. V.; Sames, D. J. Am. Chem. Soc. 2006, 128, 14220.
[25]
Prokopcová, H.; Bergman, S. D.; Aelvoet, K.; Smout, V.; Herrebout, W.; Veken, V. B.; Meerpoel, L.; Maes, B. U. W. Chem.-Eur. J 2010, 16, 13063.
[26]
Peschiulli, A.; Smout, V. Storr, T. E.; Mitchell, E. A.; Eliáš, Z.; Herrebout, W.; Berthelot, D.; Meerpoel, L.; Maes, B. U. W. Chem.- Eur. J. 2013, 19, 10378.
[27]
Cao, L.; Zhao, H.; Tan, Z.; Guan, R.; Jiang, H.; Zhang, M. Org. Lett. 2020, 22, 4781.
[28]
Ishii, Y.; Chatani, N.; Kakiuchi, F.; Murai, S. Organometallics 1997, 16, 3615.
[29]
Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000, 122, 12882.
[30]
Davies, H. M. L.; Hansen, T.; Hopper, D. W.; Panaro, S. A. J. Am. Chem. Soc. 1999, 121, 6509.
[31]
Li, Q.; Yu, Z. X. J. Am. Chem. Soc. 2010, 132, 4542.
[32]
Li, Q.; Yu, Z. X. Organometallics 2012, 31, 5185.
[33]
Anschuber, M.; Pollice, R.; Schnürch, M. Monatsh. Chem. 2019, 150, 127.
[34]
Greβies, S.; Klauck, F. J.; Kim, J. H.; Daniliuc, C. G.; Glorius, F. Angew. Chem., Int. Ed. 2018, 57, 9950.
[35]
Singh, P.; Min, J.; Min, S.; Moon, K.; Kim, H. S.; Kim, I. S. Org. Lett. 2023, 26, 57.
[36]
Spangler, J. E.; Kobayashi, Y.; Verma, P.; Wang, D. H., Yu, J. Q. J. Am. Chem. Soc. 2015, 137, 11876.
[37]
Jain, P.; Verma, P.; Xia, G.; Yu, J. Q. Nat. Chem. 2017, 9, 140.
[38]
Jiang, H. J.; Zhong, X. M.; Yu, J.; Zhang, Y.; Zhang, X.; Wu, Y. D.; Gong, L. Z. Angew. Chem., nt. Ed. 2019, 58, 1803.
[39]
Cheng, S. J.; Wang, G.; Liu, K.; Ye, Z. S. Org. Lett. 2022, 24, 864.
[40]
Liu, Y. C.; Shi, H. ChemCatChem 2023, 15, 392.
[41]
Wang, D. H.; Hao, X. S.; Wu, D. F.; Yu, J. Q. Org. Lett. 2006, 8, 3387.
[42]
Pan, S.; Endo, K.; Shibata, T. Org. Lett. 2011, 13, 4692.
[43]
Lahm, G.; Opatz, T. Org. Lett. 2014, 16, 4201.
[44]
Tran, A. T.; Yu, J. Q. Angew. Chem. 2017, 129, 10666.
[45]
Yamauchi, D.; Nishimura, T.; Yorimitsu, H. Angew. Chem., Int. Ed. 2017, 56, 7200.
[46]
Verma, P.; Richter, J. M.; Chekshin, N.; Qiao, J. X.; Yu, J. Q. J. Am. Chem. Soc. 2020, 142, 5117.
[47]
Yamauchi, D.; Yamakawa, K.; Nishimura, T. Org. Lett. 2022, 24, 6828.
[48]
DeBoef, B.; Pastine, S. J.; Sames, D. J. Am. Chem. Soc. 2004, 126, 6556.
[49]
Tsuchikama, K.; Kasagawa, M.; Endo, K.; Shibata, T. Org. Lett. 2009, 11, 1821.
[50]
Pan, S.; Matsuo, Y.; Endo, K.; Shibata, T. Tetrahedron 2012, 68, 9009.
[51]
Baslé, O.; Li, C. J. Green Chem. 2007, 9, 1047.
[52]
Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 6447.
[53]
Huang, L.; Niu, T.; Wu, J.; Zhang, Y. J. Org. Chem. 2011, 76, 1759.
[54]
Li, Z.; Li, C. J. J. Am. Chem. Soc. 2004, 126, 11810.
[55]
Deb, M. L.; Dey, S. S.; Bento, I.; Barros, M. T.; Maycock, C. D. Angew. Chem. 2013, 125, 9973.
[56]
Chang, Z.; Huang, J.; Wang, S.; Chen, G.; Zhao, H.; Wang, R.; Zhao, D. Nat. Commun. 2021, 12, 4342.
[57]
Li, Z.; Bohle, D. S.; Li, C. J. Proc. Natl. Acad. Sci. 2006, 103, 8928.
[58]
Yatabe, T.; Yamaguchi, K. Nat. Commun. 2022, 13, 6505.
[59]
Ma, L.; Shi, X.; Li, X.; Shi, D. Org. Chem. Front. 2018, 5, 3515.
[60]
Zhang, Z.; Hamel, J. D.; Schafer, L. L. Chem.-Eur. J. 2013, 19, 8751.
[61]
Yan, X. B.; Li, L.; Wu, W. Q.; Xu, L.; Li, K.; Liu, Y. C.; Shi, H. Nat. Commun. 2021, 12, 5881.
[62]
Zhang, T.; Jiang, S.; Qian, M. Y.; Zhou, Q. L.; Xiao, L. J. J. Am. Chem. Soc. 2024, 5, 30.
[63]
Yao, W. W.; Li, R.; Chen, H.; Chen, M. K.; Luan, Y. X.; Wang, Y.; Yu, Z. X.; Ye, M. Nat. Commun. 2021, 12, 3800.
[64]
Li, L.; Liu, Y. C.; Shi, H. J. Am. Chem. Soc. 2021, 143, 4154.
[65]
Feng, K.; Quevedo, R. E.; Kohrt, J. T.; Oderinde, M. S.; Reilly, U.; White, M. C. Nature 2020, 580, 621.
文章导航

/