综述与进展

二氧化碳参与的芳香化合物去芳构化羧化反应研究进展

  • 李嘉元 ,
  • 易雅平 ,
  • 席婵娟
展开
  • a 清华大学化学系 生命有机磷化学及化学生物学教育部重点实验室 北京 100084
    b 南开大学元素有机化学国家重点实验室 天津 300071

收稿日期: 2024-05-24

  修回日期: 2024-07-04

  网络出版日期: 2024-08-19

基金资助

国家自然科学基金(22071134); 国家自然科学基金(22371159)

Advances in Dearomative Carboxylation of Aromatic Compounds with Carbon Dioxide

  • Jiayuan Li ,
  • Yaping Yi ,
  • Chanjuan Xi
Expand
  • a MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084
    b State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071

Received date: 2024-05-24

  Revised date: 2024-07-04

  Online published: 2024-08-19

Supported by

National Natural Science Foundation of China(22071134); National Natural Science Foundation of China(22371159)

摘要

二氧化碳(CO2)参与的芳香化合物去芳构化羧化反应可用于合成具有环状分子骨架的羧酸类分子. 去芳构化羧化反应具有分子结构重构、环境友好、条件温和、产率高、选择性高等优点, 在药物合成和天然产物合成化学中具有重要意义. 综述了近年来二氧化碳参与的芳香化合物去芳构化羧化反应的研究, 包括过渡金属催化、光氧化还原催化和电促进化学等反应体系的反应特点和底物范围.

本文引用格式

李嘉元 , 易雅平 , 席婵娟 . 二氧化碳参与的芳香化合物去芳构化羧化反应研究进展[J]. 有机化学, 2024 , 44(10) : 3136 -3146 . DOI: 10.6023/cjoc202405030

Abstract

Dearomative carboxylation of aromatic compounds with carbon dioxide (CO2) could be utilized for the synthesis of cyclic carboxylative frameworks. The dearomative carboxylation exhibits advantages such as reconstitution molecular spatial structure, environmental friendliness, mild conditions, high yield, and high selectivity, and is of significant importance in pharmaceutical synthesis and natural product chemistry. The recent advancements in the dearomative carboxylation of aromatics with CO2 are summarized, including elucidation of the reaction characteristics and the scope of substrates via transition-metal catalysis, photoredox catalysis, and electropromoted chemistry.

参考文献

[1]
Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P. K.; Bhutani, H.; Paul, A. T.; Kumar, R. J. Med. Chem. 2021, 64, 2339.
[2]
Kang, G.; Strassfeld, D. A.; Sheng, T.; Chen, C.-Y.; Yu, J.-Q. Nature 2023, 618, 519.
[3]
(a) Wertjes, W. C.; Southgate, E. H.; Sarlah, D. Chem. Soc. Rev. 2018, 47, 7996.
[3]
(b) James, M. J.; O'Brien, P.; Taylor, R. J. K.; Unsworth, W. P. Chem. Eur. J. 2016, 22, 2856.
[4]
(a) Zheng, C.; You, S.-L. Nat. Prod. Rep. 2019, 36, 1589.
[4]
(b) Liu, Y.-Z.; Song, H.; Zheng, C.; You, S.-L. Nat. Synth. 2022, 1, 203.
[4]
(c) Zheng, C.; You, S.-L. ACS Cent. Sci. 2021, 7, 432.
[5]
(a) Birch, A. J. Nature 1946, 158, 585.
[5]
(b) Chatterjee, A.; K?nig, B. Angew. Chem., Int. Ed. 2019, 58, 14289.
[6]
(a) Buchner, E.; Curtius, T. Ber. Dtsch. Chem. Ges. 1885, 18, 2371.
[6]
(b) Shi, C.-Y.; Zhu, G.-Y.; Xu, Y.; Teng, M.-Y.; Ye, L.-W. Chin. Chem. Lett. 2023, 34, 108441.
[7]
Reimer, K.; Tiemann, F. Ber. Dtsch. Chem. Ges. 1876, 9, 824.
[8]
Gao, W.; Deng, W.; Gao, Y.; Liang, R.; Jia, Y. Acta Chim. Sinica 2024, 82, 1. (in Chinese)
[8]
(高炜洋, 邓伟超, 高扬, 梁仁校, 贾义霞, 化学学报, 2024, 82, 1.)
[9]
Harman, W. D.; Taube, H. J. Am. Chem. Soc. 1988, 110, 7906.
[10]
Ohno, H.; Maeda, S.; Okumura, M.; Wakayama, R.; Tanaka, T. Chem. Commun. 2002, 316.
[11]
López Ortiz, F.; Iglesias, M. J.; Fernández, I.; Andújar Sánchez, C. M.; Ruiz Gómez, G. Chem. Rev. 2007, 107, 1580.
[12]
Bariwal, J.; Voskressensky, L. G.; Van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3831.
[13]
(a) Correa, A.; Martin, R. Angew. Chem., Int. Ed. 2009, 48, 6201.
[13]
(b) Gui, Y.-Y.; Zhou, W.-J.; Ye, J.-H.; Yu, D.-G. ChemSusChem 2017, 10, 1337.
[13]
(c) James, M. J.; Schwarz, J. L.; Strieth-Kalthoff, F.; Wibbeling, B.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 8624.
[13]
(d) Zhu, M.; Zheng, C.; Zhang, X.; You, S.-L. J. Am. Chem. Soc. 2019, 141, 2636.
[14]
Wang, L.; Qi, C.; Xiong, W; Jiang, H. Chin. J. Catal. 2022, 43, 1598.
[15]
Ran, C.-K.; Xiao, H.-Z.; Liao, L.-L.; Ju, T.; Zhang, W.; Yu, D.-G. Natl. Sci. Open. 2023, 2, 20220024.
[16]
Ran, C.-K.; Chen, X.-W.; Gui, Y.-Y.; Liu, J.; Song, L.; Ren, K.; Yu, D.-G. Sci. China Chem. 2020, 63, 1336.
[17]
(a) Roche, S. P.; Porco Jr., J. A. Angew. Chem., nt. Ed. 2011, 50, 4068.
[17]
(b) Bringezu, S. J. Ind. Ecol. 2014, 18, 327.
[17]
(c) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
[17]
(d) Klankermayer, J.; Wesselbaum, S.; Beydoun, K.; Leitner, W. Angew. Chem., Int. Ed. 2016, 55, 7296.
[17]
(e) Artz, J.; Mu?ller, T. E.; Thenert, K. Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434.
[18]
Ran, C.-K.; Liao, L.-L.; Gao, T.-Y.; Gui, Y.-Y.; Yu, D.-G. Curr. Opin. Green Sustainable Chem. 2021, 32, 100525.
[19]
Wang, S.; Du, G.; Xi, C. Org. Biomol. Chem. 2016, 14, 3666.
[20]
Fan, Z.; Zhang, Z.; Xi, C. ChemSusChem 2020, 13, 6201.
[21]
Senboku, H.; Katayama, A. Curr. Opin. Green Sustainable Chem. 2017, 3, 50.
[22]
Juliá-Hernández, F.; Moragas, T.; Cornella, J.; Martin, R. Nature 2017, 545, 84.
[23]
Hong, J.; Li, M.; Zhang, J.; Sun, B; Mo, F. ChemSusChem 2019, 12, 6.
[24]
Bertuzzi, G.; Cerveri, A.; Lombardi, L.; Bandini, M. Chin. J. Chem. 2021, 39, 3116.
[25]
Buttard, F.; Guinchard, X. ACS Catal. 2023, 13, 9442.
[26]
Mita, T.; Ishii, S.; Higuchi, Y.; Sato, Y. Org. Lett. 2018, 20, 7603.
[27]
Ye, J.-H.; Zhu, L.; Yan, S.-S; Miao, M.; Zhang, X.-C.; Zhou, W.-J.; Li, J.; Lan, Y.; Yu, D.-G. ACS Catal. 2017, 7, 8324.
[28]
(a) McCusker, J. K. Science 2001, 293, 1599.
[28]
(b) Zheng, Y.; Pan, Z.-M.; Wang, X.-C. Chin. J. Catal. 2013, 34, 524.
[28]
(c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
[29]
Okumura, M.; Sarlah, D. Eur. J. Org. Chem. 2020, 1259.
[30]
Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S. Energy Environ. Sci. 2022, 15, 880.
[31]
Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[32]
Zhu, M.; Zhang, X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2022, 55, 2510.
[33]
Yatham, V. R.; Shen, Y.; Martin, R. Angew. Chem., Int. Ed. 2017, 56, 10915.
[34]
Hou, J.; Ee, A.; Cao, H.; Ong, H.-W.; Xu, J.-H.; Wu, J. Angew. Chem. Int. Ed. 2018, 57, 17220.
[35]
Fu, Q.; Bo, Z.-Y.; Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Nat. Commun. 2019, 10, 3592.
[36]
Wang, H.; Gao, Y.; Zhou, C.; Li, G. J. Am. Chem. Soc. 2020, 142, 8122.
[37]
Zhou, W.-J.; Wang, Z.-H.; Liao, L.-L.; Jiang, Y.-X.; Cao, K.-G.; Ju, T.; Li, Y.; Cao, G.-M.; Yu, D.-G. Nat. Commun. 2020, 11, 3263.
[38]
Yi, Y.; Fan, Z.; Xi, C. Green Chem. 2022, 24, 7894.
[39]
Gao, W.; Yang, Q.; Yang, H.; Yao, Y.; Bai, J.; Sun, J.; Sun, S. Org. Lett. 2024, 26, 467.
[40]
Gao, Y.; Wang, H.; Chi, Z.; Yang, L.; Zhou, C.; Li, G. CCS Chem. 2022, 4, 1565.
[41]
Yi, Y.; Xi, C. Chin. J. Catal. 2022, 43, 1652.
[42]
Otero, M. D.; Batanero, B.; Barba, F. Tetrahedron Lett. 2006, 47, 2171.
[43]
Gui, Y.-Y.; Yan, S.-S.; Wang, W.; Chen, L.; Zhang, W.; Ye, J.-H.; Yu, D.-G. Sci. Bull. 2023, 68, 3124.
[44]
Tan, G.; Das, M.; Keum, H.; Bellotti, P.; Daniliuc, C.; Glorius, F. Nat. Chem. 2022, 14, 1174.
[45]
Yang, Z.; Yu, Y.; Lai, L.; Zhou, L.; Ye, K.; Chen, F.-E. Green Synth. Catal. 2021, 2, 19.
[46]
Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Chin. J. Chem. 2018, 36, 644.
[47]
Huang, H.; Ye, J.-H.; Zhu, L.; Ran, C.-K.; Miao, M.; Wang, W.; Chen, H.; Zhou, W.-J.; Lan, Y.; Yu, B.; Yu, D.-G. CCS Chem. 2020, 3, 1746.
[48]
Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Acc. Chem. Res. 2021, 54, 2518.
[49]
Hang, W.; Li, D.; Zou, S.; Xi, C. J. Org. Chem. 2022, 88, 5007.
[50]
Liu, C.; Shen, N.; Shang, R. Nat. Commun. 2022, 13, 354.
[51]
Liu, C.; Li, K.; Shang, R. ACS Catal. 2022, 12, 4103.
[52]
Chmiel, A. F.; Williams, O. P.; Chernowsky, C. P.; Yeung, C. S.; Wickens, Z. K. J. Am. Chem. Soc. 2021, 143, 10882.
[53]
Ju, T.; Zhou, Y.-Q.; Cao, K.-G.; Fu, Q.; Ye, J.-H.; Sun, G.-Q.; Liu, X.-F.; Chen, L.; Liao, L.-L.; Yu, D.-G. Nat. Catal. 2021, 4, 304.
[54]
Mangaonkar, S. R.; Hayashi, H.; Takano, H.; Kanna, W.; Maeda, S.; Mita, T. ACS Catal. 2023, 13, 2482.
[55]
Xu, P.; Wang, S.; Xu, H.; Liu, Y.-Q.; Li, R.-B.; Liu, W.-W.; Wang, X.-Y.; Zou, M.-L.; Zhou, Y.; Guo, D.; Zhu, X. ACS Catal. 2023, 13, 2149.
[56]
Yuan, G.; Li, L.; Jiang, H.; Qi, C.; Xie, F. Chin. J. Chem. 2010, 28, 1983.
[57]
You, Y.; Kanna, W.; Takano, H.; Hayashi, H.; Maeda, S.; Mita, T. J. Am. Chem. Soc. 2022, 144, 3685.
[58]
(a) Li, C.; Yuan, G.; Jiang, H. Chin. J. Chem. 2010, 28, 1685.
[58]
(b) Li, C.-H.; Yuan, G.-Q.; Ji, X.-C.; Wang, X.-J.; Ye, J.-S.; Jiang, H.-F. Electrochim. Acta. 2011, 56, 1529.
[58]
(c) Matthessen, R.; Fransaer, J.; Binnemans, K.; Vos, D. E. D. RSC Adv. 2013, 3, 4634.
[58]
(d) Gui, Y.-Y.; Chen, X.-W.; Mo, X.-Y.; Yue, J.-P.; Yuan, R.; Liu, Y.; Liao, L.-L.; Ye, J.-H.; Yu, D.-G. J. Am. Chem. Soc. 2024, 146, 2919.
[59]
Rawat, V. K.; Hayashi, H.; Katsuyama, H.; Mangaonkar, S. R.; Mita, T. Org. Lett. 2023, 25, 4231.
文章导航

/