综述与进展

铁催化二氧化碳选择性氢化、硼氢化和硅氢化

  • 赵秋婷 ,
  • 王文光
展开
  • 北京师范大学化学学院 北京 100875

收稿日期: 2024-06-28

  修回日期: 2024-07-27

  网络出版日期: 2024-08-26

Iron-Catalyzed Selective Hydrogenation and Hydroboration/Hydrosilylation of CO2

  • Qiuting Zhao ,
  • Wenguang Wang
Expand
  • College of Chemistry, Beijing Normal University, Beijing 100875

Received date: 2024-06-28

  Revised date: 2024-07-27

  Online published: 2024-08-26

摘要

将二氧化碳(CO2)转化为高附加值化学品或燃料是实现碳循环的理想途径. 作为C1化学的重要组成部分, 二氧化碳的还原转化研究一直备受化学家们关注. 在过渡金属催化条件下, 利用氢气、硼烷或硅烷(E—H, E=H、B或Si)作为还原剂, 可以将CO2还原到甲酸、甲醛、甲醇等各种有机分子. 特别是, 基于廉价金属催化CO2选择性还原转化已成为该领域的一个重要研究方向. 从反应机理和反应选择性出发, 对均相铁催化CO2的E—H化还原研究进展进行综述.

本文引用格式

赵秋婷 , 王文光 . 铁催化二氧化碳选择性氢化、硼氢化和硅氢化[J]. 有机化学, 2024 , 44(10) : 3106 -3116 . DOI: 10.6023/cjoc202405032

Abstract

Carbon dioxide (CO2) serves as a sustainable carbon source for building biomass, fossil fuels, and organic chemicals. Converting CO2 into value-added chemicals or fuels is an ideal approach to achieve carbon cycling. The reduction and conversion of CO2, a pivotal aspect of C1 chemistry, have long been a subject of intense research interest. Previous studies have demonstrated that through transition metal catalysis, hydrogen, boranes, and silanes (E—H, E=H, B or Si) act as effective reducing agents to transform CO2 into a range of C1 chemicals, such as formate, formaldehyde, and methanol. Over the past decade, research focus in this field has shifted towards utilizing cost-effective metals as catalysts for selective CO2 reduction. A comprehensive review of homogeneous iron-catalyzed CO2 reduction using E—H is presented, emphasizing reaction mechanisms and selectivity.

参考文献

[1]
Keim, W. Pure Appl. Chem. 1986, 58, 825.
[2]
Bhaskar, K.; Das, P. C. B.S. Thesis, National Institute of Technology, Rourkela, 2007.
[3]
Cooper, A. I. J. Mater. Chem. 2000, 10, 207.
[4]
Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Chem. Lett. 1976, 5, 863.
[5]
Behr, A.; Nowakowski, K. Adv. Inorg. Chem. 2014, 66, 223.
[6]
Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115, 12936.
[7]
Sordakis, K.; Tang, C.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372.
[8]
Huang, W.; Qiu, L.; Ren, F.; He, L. Chin. J. Org. Chem. 2021, 41, 3914. (in Chinese)
[8]
(黄文斌, 邱丽琪, 任方煜, 何良年, 有机化学, 2021, 41, 3914.)
[9]
Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2015, 54, 6186.
[10]
Chakraborty, S.; Bhattacharya, P.; Dai, H.; Guan, H. Acc. Chem. Res. 2015, 48, 1995.
[11]
Singh, T.; Jalwal, S.; Chakraborty, S. Asian J. Org. Chem. 2022, 11, e202200330.
[12]
Das, C.; Grover, J.; Tannu; Das, A.; Maiti, D.; Dutta, A.; Lahiri, G. K. Dalton Trans. 2022, 51, 8160.
[13]
Cauwenbergh, R.; Goyal, V.; Maiti, R.; Natte, K.; Das, S. Chem. Soc. Rev. 2022, 51, 9371.
[14]
Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2010, 132, 8872.
[15]
Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem. Eur. J. 2012, 18, 72.
[16]
Evans, G. O.; Newell, C. J. Inorg. Chim. Acta 1978, 31, L387.
[17]
Tai, C.-C.; Chang, T.; Roller, B.; Jessop, P. G. Inorg. Chem. 2003, 42, 7340.
[18]
Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9777.
[19]
Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2012, 134, 20701.
[20]
Fong, H.; Peters, J. C. Inorg. Chem. 2015, 54, 5124.
[21]
Montandon-Clerc, M.; Laurenczy, G. J. Catal. 2018, 362, 78.
[22]
Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
[23]
Rivada-Wheelaghan, O.; Dauth, A.; Leitus, G.; Diskin-Posner, Y.; Milstein, D. Inorg. Chem. 2015, 54, 4526.
[24]
Bertini, F.; Gorgas, N.; St?ger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.; Gonsalvi, L. ACS Catal. 2016, 6, 2889.
[25]
Zhang, Y.; MacIntosh, A. D.; Wong, J. L.; Bielinski, E. A.; Williard, P. G.; Mercado, B. Q.; Hazari, N.; Bernskoetter, W. H. Chem. Sci. 2015, 6, 4291.
[26]
Curley, J. B.; Smith, N. E.; Bernskoetter, W. H.; Hazari, N.; Mercado, B. Q. Organometallics 2018, 37, 3846.
[27]
Jayarathne, U.; Hazari, N.; Bernskoetter, W. H. ACS Catal. 2018, 8, 1338.
[28]
Zhu, F.; Zhu-Ge, L.; Yang, G.; Zhou, S. ChemSusChem 2015, 8, 609.
[29]
Casey, C. P.; Guan, H. J. Am. Chem. Soc. 2009, 131, 2499.
[30]
Coleman, M. G.; Brown, A. N.; Bolton, B. A.; Guan, H. Adv. Synth. Catal. 2010, 352, 967.
[31]
Berkessel, A.; Reichau, S.; H?h, A. V. D.; Leconte, N.; Meud?rfl, J.-M. Organometallics 2011, 30, 3880.
[32]
Fleischer, S.; Zhou, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 5120.
[33]
Fleischer, S.; Zhou, S.; Werkmeister, S.; Junge, K.; Beller, M. Chem.-Eur. J. 2013, 19, 4997.
[34]
Kamitani, M.; Nishiguchi, Y.; Tada, R.; Itazaki, M.; Nakazawa, H. Organometallics 2014, 33, 1532.
[35]
Lu, X.; Cheng, R.; Turner, N.; Liu, Q.; Zhang, M.; Sun, X. J. Org. Chem. 2014, 79, 9355.
[36]
Yu, X.; Pang, M.; Zhang, S.; Hu, X.; Tung, C.-H.; Wang, W. J. Am. Chem. Soc. 2018, 140, 11454.
[37]
Gao, H.; Jia, J.; Tung, C.-H.; Wang, W. Organometallics 2023, 42, 944.
[38]
Coufourier, S.; Gaillard, S.; Clet, G.; Serre, C.; Daturi, M.; Renaud, J.-L. Chem. Commun. 2019, 55, 4977.
[39]
Coufourier, S.; Gaillard, Q. G.; Lohier, J. F.; Poater, A.; Gaillard, S.; Renaud, J.-L. ACS Catal. 2020, 10, 2108.
[40]
Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. Green Chem. 2016, 18, 5831.
[41]
Kar, S.; Goeppert, A.; Galvan, V.; Chowdhury, R.; Olah, J.; Prakash, G. K. S. J. Am. Chem. Soc. 2018, 140, 16873.
[42]
Jessop, P. G. In The Handbook of Homogeneous Hydrogenation, Eds.: de Vries, J. G.; Elsevier, C. J., Wiley-VCH, Weinheim, 2007, p. 489.
[43]
Tominaga, K.-I.; Sasaki, Y.; Watanabe, T.; Saito, M. J. Chem. Soc., Chem. Commun. 1993, 629.
[44]
Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122.
[45]
Wesselbaum, S.; Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499.
[46]
Rezayee, N. M.; Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 1028.
[47]
Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K. M.; Kothe, J.; Stein, T.; Englert, U.; H?lscher, M.; Klankermayer, J.; Leitner, W. Chem. Sci. 2015, 6, 693.
[48]
Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. J. Am. Chem. Soc. 2016, 138, 778.
[49]
Everett, M.; Wass, D. F. Chem. Commun. 2017, 53, 9502.
[50]
Kar, S.; Sen, R.; Kothandaraman, J.; Goeppert, A.; Chowdhury, R.; Munoz, S. B.; Haiges, R.; Prakash, G. K. S. J. Am. Chem. Soc. 2019, 141, 3160.
[51]
Kar, S.; Sen, R.; Goeppert, A.; Prakash, G. K. S. J. Am. Chem. Soc. 2018, 140, 1580.
[52]
Khusnutdinova, J. R.; Garg, J. A.; Milstein, D. ACS Catal. 2015, 5, 2416.
[53]
Ribeiro, A. P. C.; Martins, L. M. D. R. S.; Pombeiro, A. J. L. Green Chem. 2017, 19, 4811.
[54]
Lane, E. M.; Zhang, Y.; Hazari, N.; Bernskoetter, W. H. Organometallics 2019, 38, 3084.
[55]
Song, Z.; Liu, J.; Bai, Y.; Li, J.; Peng, J. Chin. J. Org. Chem. 2023, 43, 2068. (in Chinese)
[55]
(宋姿洁, 刘俊, 白赢, 厉嘉云, 彭家建, 有机化学, 2023, 43, 2068.)
[56]
Zhang, Y.; Zhang, T.; Das, S. Green Chem. 2020, 22, 1800.
[57]
Goyal, V.; Naik, G.; Narani, A.; Natte, K.; Jagadeesh, R. V. Tetrahedron 2021, 98, 132414.
[58]
Fernández-Alvarez, F. J.; Aitanib, A. M.; Oro, L. A. Catal. Sci. Technol. 2014, 4, 611.
[59]
Bontemps, S. Coord. Chem. Rev. 2016, 308, 117.
[60]
Murphy, L. J.; Hollenhorst, H.; McDonald, R.; Ferguson, M.; Lumsden, M. D.; Turculet, L. Organometallics 2017, 36, 3709.
[61]
Chakraborty, S.; Patel, Y. J.; Krause, J. A.; Guan, H. Polyhedron 2012, 32, 30.
[62]
Chakraborty, S.; Zhang, J.; Patel, Y. J.; Krause, J. A.; Guan, H. Inorg. Chem. 2013, 52, 37.
[63]
Huang, F.; Zhang, C.; Jiang, J.; Wang, Z.-X.; Guan, H. Inorg. Chem. 2011, 50, 3816.
[64]
Jin, G.; Werncke, C. G.; Escudié, Y.; Sabo-Etienne, S.; Bontemps, S. J. Am. Chem. Soc. 2015, 137, 9563.
[65]
Béthegnies, A.; Escudié, Y.; Nun?ez-Dallos, N.; Vendier, L.; Hurtado, J.; del Rosal, I.; Maron, L.; Bontemps, S. ChemCatChem 2019, 11, 760.
[66]
Zhang, D.; Jarava-Barrera, C.; Bontemps, S. ACS Catal. 2021, 11, 4568.
[67]
Desmons, S.; Grayson-Steel, K.; Nun?ez-Dallos, N.; Vendier, L.; Hurtado, J.; Clapés, P.; Fauré, R.; Dumon, C.; Bontemps, S. J. Am. Chem. Soc. 2021, 143, 16274.
[68]
Desmons, S.; Zhou, Y.; Zhang, D.; Jarava-Barrera, C.; Coffinet, A.; Simonneau, A.; Vendier, L.; Luo, G.; Bontemps, S. Eur. J. Org. Chem. 2023, 26, e2023005.
[69]
Aloisi, A.; Berthet, J.-C.; Genre, C.; Thuéry, P.; Cantat, T. Dalton Trans. 2016, 45, 14774.
[70]
Lau, S.; Provis-Evans, C. B.; James, A. P.; Webster, R. L. Dalton Trans. 2021, 50, 10696.
[71]
Frogneux, X.; Jacquet, O.; Cantat, T. Catal. Sci. Technol. 2014, 4, 1529.
[72]
Jurado-Vázquez, T.; García, J. J. Catal. Lett. 2018, 148, 1162.
[73]
Li, W.-D.; Zhu, D.-Y.; Li, G.; Chen, J.; Xia, J.-B. Adv. Synth. Catal. 2019, 361, 5098.
[74]
Li, W.-D.; Chen, J.; Zhu, D.-Y.; Xia, J.-B. Chin. J. Chem. 2021, 39, 614.
[75]
Nylund, P. V. S.; Rigoni, G.; Albrecht, M. Organometallics 2023, 42, 1740.
[76]
Xiao, Y.; Xie, F.; Zhang, H.-T.; Zhang, M.-T. JACS Au 2024, 4, 1207.
[77]
Li, Y.; Chen, J.-Y.; Zhang, X.; Peng, Z.; Miao, Q.; Chen, W.; Xie, F.; Liao, R.-Z.; Ye, S.; Tung, C.-H.; Wang, W. J. Am. Chem. Soc. 2023, 145, 26915.
[78]
Yang, Z.; Shen, C.; Dong, K. Chin. J. Chem. 2022, 40, 2734.
文章导航

/