有机化学 ›› 2024, Vol. 44 ›› Issue (10): 3106-3116.DOI: 10.6023/cjoc202405032 上一篇 下一篇
综述与进展
收稿日期:
2024-06-28
修回日期:
2024-07-27
发布日期:
2024-08-23
通讯作者:
王文光
文章分享
将二氧化碳(CO2)转化为高附加值化学品或燃料是实现碳循环的理想途径. 作为C1化学的重要组成部分, 二氧化碳的还原转化研究一直备受化学家们关注. 在过渡金属催化条件下, 利用氢气、硼烷或硅烷(E—H, E=H、B或Si)作为还原剂, 可以将CO2还原到甲酸、甲醛、甲醇等各种有机分子. 特别是, 基于廉价金属催化CO2选择性还原转化已成为该领域的一个重要研究方向. 从反应机理和反应选择性出发, 对均相铁催化CO2的E—H化还原研究进展进行综述.
赵秋婷, 王文光. 铁催化二氧化碳选择性氢化、硼氢化和硅氢化[J]. 有机化学, 2024, 44(10): 3106-3116.
Qiuting Zhao, Wenguang Wang. Iron-Catalyzed Selective Hydrogenation and Hydroboration/Hydrosilylation of CO2[J]. Chinese Journal of Organic Chemistry, 2024, 44(10): 3106-3116.
[1] |
Keim, W. Pure Appl. Chem. 1986, 58, 825.
|
[2] |
Bhaskar, K.; Das, P. C. B.S. Thesis, National Institute of Technology, Rourkela, 2007.
|
[3] |
Cooper, A. I. J. Mater. Chem. 2000, 10, 207.
|
[4] |
Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Chem. Lett. 1976, 5, 863.
|
[5] |
Behr, A.; Nowakowski, K. Adv. Inorg. Chem. 2014, 66, 223.
|
[6] |
Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115, 12936.
|
[7] |
Sordakis, K.; Tang, C.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372.
|
[8] |
Huang, W.; Qiu, L.; Ren, F.; He, L. Chin. J. Org. Chem. 2021, 41, 3914. (in Chinese)
|
(黄文斌, 邱丽琪, 任方煜, 何良年, 有机化学, 2021, 41, 3914.)
|
|
[9] |
Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2015, 54, 6186.
|
[10] |
Chakraborty, S.; Bhattacharya, P.; Dai, H.; Guan, H. Acc. Chem. Res. 2015, 48, 1995.
|
[11] |
Singh, T.; Jalwal, S.; Chakraborty, S. Asian J. Org. Chem. 2022, 11, e202200330.
|
[12] |
Das, C.; Grover, J.; Tannu; Das, A.; Maiti, D.; Dutta, A.; Lahiri, G. K. Dalton Trans. 2022, 51, 8160.
|
[13] |
Cauwenbergh, R.; Goyal, V.; Maiti, R.; Natte, K.; Das, S. Chem. Soc. Rev. 2022, 51, 9371.
|
[14] |
Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2010, 132, 8872.
|
[15] |
Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem. Eur. J. 2012, 18, 72.
|
[16] |
Evans, G. O.; Newell, C. J. Inorg. Chim. Acta 1978, 31, L387.
|
[17] |
Tai, C.-C.; Chang, T.; Roller, B.; Jessop, P. G. Inorg. Chem. 2003, 42, 7340.
|
[18] |
Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9777.
|
[19] |
Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2012, 134, 20701.
|
[20] |
Fong, H.; Peters, J. C. Inorg. Chem. 2015, 54, 5124.
|
[21] |
Montandon-Clerc, M.; Laurenczy, G. J. Catal. 2018, 362, 78.
|
[22] |
Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
|
[23] |
Rivada-Wheelaghan, O.; Dauth, A.; Leitus, G.; Diskin-Posner, Y.; Milstein, D. Inorg. Chem. 2015, 54, 4526.
|
[24] |
Bertini, F.; Gorgas, N.; Stöger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.; Gonsalvi, L. ACS Catal. 2016, 6, 2889.
|
[25] |
Zhang, Y.; MacIntosh, A. D.; Wong, J. L.; Bielinski, E. A.; Williard, P. G.; Mercado, B. Q.; Hazari, N.; Bernskoetter, W. H. Chem. Sci. 2015, 6, 4291.
|
[26] |
Curley, J. B.; Smith, N. E.; Bernskoetter, W. H.; Hazari, N.; Mercado, B. Q. Organometallics 2018, 37, 3846.
|
[27] |
Jayarathne, U.; Hazari, N.; Bernskoetter, W. H. ACS Catal. 2018, 8, 1338.
|
[28] |
Zhu, F.; Zhu-Ge, L.; Yang, G.; Zhou, S. ChemSusChem 2015, 8, 609.
|
[29] |
Casey, C. P.; Guan, H. J. Am. Chem. Soc. 2009, 131, 2499.
|
[30] |
Coleman, M. G.; Brown, A. N.; Bolton, B. A.; Guan, H. Adv. Synth. Catal. 2010, 352, 967.
|
[31] |
Berkessel, A.; Reichau, S.; Höh, A. V. D.; Leconte, N.; Meudörfl, J.-M. Organometallics 2011, 30, 3880.
|
[32] |
Fleischer, S.; Zhou, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2013, 52, 5120.
|
[33] |
Fleischer, S.; Zhou, S.; Werkmeister, S.; Junge, K.; Beller, M. Chem.-Eur. J. 2013, 19, 4997.
|
[34] |
Kamitani, M.; Nishiguchi, Y.; Tada, R.; Itazaki, M.; Nakazawa, H. Organometallics 2014, 33, 1532.
|
[35] |
Lu, X.; Cheng, R.; Turner, N.; Liu, Q.; Zhang, M.; Sun, X. J. Org. Chem. 2014, 79, 9355.
|
[36] |
Yu, X.; Pang, M.; Zhang, S.; Hu, X.; Tung, C.-H.; Wang, W. J. Am. Chem. Soc. 2018, 140, 11454.
|
[37] |
Gao, H.; Jia, J.; Tung, C.-H.; Wang, W. Organometallics 2023, 42, 944.
|
[38] |
Coufourier, S.; Gaillard, S.; Clet, G.; Serre, C.; Daturi, M.; Renaud, J.-L. Chem. Commun. 2019, 55, 4977.
|
[39] |
Coufourier, S.; Gaillard, Q. G.; Lohier, J. F.; Poater, A.; Gaillard, S.; Renaud, J.-L. ACS Catal. 2020, 10, 2108.
|
[40] |
Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. Green Chem. 2016, 18, 5831.
|
[41] |
Kar, S.; Goeppert, A.; Galvan, V.; Chowdhury, R.; Olah, J.; Prakash, G. K. S. J. Am. Chem. Soc. 2018, 140, 16873.
|
[42] |
Jessop, P. G. In The Handbook of Homogeneous Hydrogenation, Eds.: de Vries, J. G.; Elsevier, C. J., Wiley-VCH, Weinheim, 2007, p. 489.
|
[43] |
Tominaga, K.-I.; Sasaki, Y.; Watanabe, T.; Saito, M. J. Chem. Soc., Chem. Commun. 1993, 629.
|
[44] |
Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122.
|
[45] |
Wesselbaum, S.; Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499.
|
[46] |
Rezayee, N. M.; Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 1028.
|
[47] |
Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K. M.; Kothe, J.; Stein, T.; Englert, U.; Hölscher, M.; Klankermayer, J.; Leitner, W. Chem. Sci. 2015, 6, 693.
|
[48] |
Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. J. Am. Chem. Soc. 2016, 138, 778.
|
[49] |
Everett, M.; Wass, D. F. Chem. Commun. 2017, 53, 9502.
|
[50] |
Kar, S.; Sen, R.; Kothandaraman, J.; Goeppert, A.; Chowdhury, R.; Munoz, S. B.; Haiges, R.; Prakash, G. K. S. J. Am. Chem. Soc. 2019, 141, 3160.
|
[51] |
Kar, S.; Sen, R.; Goeppert, A.; Prakash, G. K. S. J. Am. Chem. Soc. 2018, 140, 1580.
|
[52] |
Khusnutdinova, J. R.; Garg, J. A.; Milstein, D. ACS Catal. 2015, 5, 2416.
|
[53] |
Ribeiro, A. P. C.; Martins, L. M. D. R. S.; Pombeiro, A. J. L. Green Chem. 2017, 19, 4811.
|
[54] |
Lane, E. M.; Zhang, Y.; Hazari, N.; Bernskoetter, W. H. Organometallics 2019, 38, 3084.
|
[55] |
Song, Z.; Liu, J.; Bai, Y.; Li, J.; Peng, J. Chin. J. Org. Chem. 2023, 43, 2068. (in Chinese)
|
(宋姿洁, 刘俊, 白赢, 厉嘉云, 彭家建, 有机化学, 2023, 43, 2068.)
|
|
[56] |
Zhang, Y.; Zhang, T.; Das, S. Green Chem. 2020, 22, 1800.
|
[57] |
Goyal, V.; Naik, G.; Narani, A.; Natte, K.; Jagadeesh, R. V. Tetrahedron 2021, 98, 132414.
|
[58] |
Fernández-Alvarez, F. J.; Aitanib, A. M.; Oro, L. A. Catal. Sci. Technol. 2014, 4, 611.
|
[59] |
Bontemps, S. Coord. Chem. Rev. 2016, 308, 117.
|
[60] |
Murphy, L. J.; Hollenhorst, H.; McDonald, R.; Ferguson, M.; Lumsden, M. D.; Turculet, L. Organometallics 2017, 36, 3709.
|
[61] |
Chakraborty, S.; Patel, Y. J.; Krause, J. A.; Guan, H. Polyhedron 2012, 32, 30.
|
[62] |
Chakraborty, S.; Zhang, J.; Patel, Y. J.; Krause, J. A.; Guan, H. Inorg. Chem. 2013, 52, 37.
|
[63] |
Huang, F.; Zhang, C.; Jiang, J.; Wang, Z.-X.; Guan, H. Inorg. Chem. 2011, 50, 3816.
|
[64] |
Jin, G.; Werncke, C. G.; Escudié, Y.; Sabo-Etienne, S.; Bontemps, S. J. Am. Chem. Soc. 2015, 137, 9563.
|
[65] |
Béthegnies, A.; Escudié, Y.; Nuñez-Dallos, N.; Vendier, L.; Hurtado, J.; del Rosal, I.; Maron, L.; Bontemps, S. ChemCatChem 2019, 11, 760.
|
[66] |
Zhang, D.; Jarava-Barrera, C.; Bontemps, S. ACS Catal. 2021, 11, 4568.
|
[67] |
Desmons, S.; Grayson-Steel, K.; Nuñez-Dallos, N.; Vendier, L.; Hurtado, J.; Clapés, P.; Fauré, R.; Dumon, C.; Bontemps, S. J. Am. Chem. Soc. 2021, 143, 16274.
|
[68] |
Desmons, S.; Zhou, Y.; Zhang, D.; Jarava-Barrera, C.; Coffinet, A.; Simonneau, A.; Vendier, L.; Luo, G.; Bontemps, S. Eur. J. Org. Chem. 2023, 26, e2023005.
|
[69] |
Aloisi, A.; Berthet, J.-C.; Genre, C.; Thuéry, P.; Cantat, T. Dalton Trans. 2016, 45, 14774.
|
[70] |
Lau, S.; Provis-Evans, C. B.; James, A. P.; Webster, R. L. Dalton Trans. 2021, 50, 10696.
|
[71] |
Frogneux, X.; Jacquet, O.; Cantat, T. Catal. Sci. Technol. 2014, 4, 1529.
|
[72] |
Jurado-Vázquez, T.; García, J. J. Catal. Lett. 2018, 148, 1162.
|
[73] |
Li, W.-D.; Zhu, D.-Y.; Li, G.; Chen, J.; Xia, J.-B. Adv. Synth. Catal. 2019, 361, 5098.
|
[74] |
Li, W.-D.; Chen, J.; Zhu, D.-Y.; Xia, J.-B. Chin. J. Chem. 2021, 39, 614.
|
[75] |
Nylund, P. V. S.; Rigoni, G.; Albrecht, M. Organometallics 2023, 42, 1740.
|
[76] |
Xiao, Y.; Xie, F.; Zhang, H.-T.; Zhang, M.-T. JACS Au 2024, 4, 1207.
|
[77] |
Li, Y.; Chen, J.-Y.; Zhang, X.; Peng, Z.; Miao, Q.; Chen, W.; Xie, F.; Liao, R.-Z.; Ye, S.; Tung, C.-H.; Wang, W. J. Am. Chem. Soc. 2023, 145, 26915.
|
[78] |
Yang, Z.; Shen, C.; Dong, K. Chin. J. Chem. 2022, 40, 2734.
|
[1] | 杜佳言, 刘俊涛, 刘桂霞, 黄正. 钴催化末端烯烃区域和立体选择性异构合成反式-2-烯烃[J]. 有机化学, 2024, 44(9): 2889-2897. |
[2] | 李龙龙, 何欣悦, 周龙生, 曲亨通, 冯承涛, 徐坤. 硫氰酸铵促进的[3+3]环化反应合成5-芳基吡唑并[1,5-a]嘧啶[J]. 有机化学, 2024, 44(9): 2832-2840. |
[3] | 朱洁, 汤思丹, 阚秀妹, 凡士柱, 王鹏飞, 杨培俊. 溶剂控制三氟甲烷磺酸钪催化2-(杂)芳基-N-磺酰基吖丁啶开环反应: 烯丙胺/1,3-噁嗪衍生物的合成[J]. 有机化学, 2024, 44(9): 2796-2809. |
[4] | 李平, 张寅, 杨子琪, 郝文娟, 姜波. 利用碱促进环外1,3-二羰化合物的解构反应合成腙化的1,n-二羰化合物及其生物活性检测[J]. 有机化学, 2024, 44(9): 2777-2784. |
[5] | 陈倩, 韩召斌, 丁奎岭. 过渡金属催化芳香碳环的选择性不对称氢化[J]. 有机化学, 2024, 44(7): 2063-2076. |
[6] | 刘典范, 王健智, 王梦晴, 陈晓蓓, 胡延维, 张士磊. 邻二碘芳烃和氢化钠产生芳炔用于硫醇的邻碘芳基化反应[J]. 有机化学, 2024, 44(7): 2363-2370. |
[7] | 曹茜娴, 由君, 刘其业, 刘波, 喻艳超, 武文菊. (4S,4'S)-2,2'-(4,6-二苯并呋喃二基)双[4,5-二氢-4-苯基噁唑]-镍(II)配合物催化高对映选择性氰亚胺的环加成反应[J]. 有机化学, 2024, 44(7): 2315-2332. |
[8] | 李非凡, 余康, 倪传志, 朱园园, 曾婕, 古双喜. 测定氨基酸浓度和对映体组成的手性荧光探针[J]. 有机化学, 2024, 44(6): 1862-1869. |
[9] | 陆玲依, 邱晓东. 自由基形式烯烃双烷基化反应研究进展[J]. 有机化学, 2024, 44(6): 1701-1718. |
[10] | 刘晨光. 含氮芳香性杂环化合物的不对称氢化反应研究进展[J]. 有机化学, 2024, 44(5): 1403-1422. |
[11] | 徐光利, 韩鸿萍, 曹露微, 洪思敏, 海林悦, 崔香. 过渡金属催化1,3-共轭二烯基硼化合物合成研究进展[J]. 有机化学, 2024, 44(5): 1480-1493. |
[12] | 密思怡, 马隆龙, 刘建国. 连续流选择性加氢技术研究进展[J]. 有机化学, 2024, 44(5): 1445-1457. |
[13] | 李晓勇, 黄丹凤, 周玉秀, 刘小康, 王克虎, 王君娇, 胡雨来. 二氟甲基溴代腙与β-(N,N-二甲氨基)烯酮/丙烯酸酯/丙烯酰胺的[3+2]环化反应研究[J]. 有机化学, 2024, 44(4): 1226-1239. |
[14] | 孔德亮, 杨萧昂, 赵怡玲, 彭彦博, 朱红平. 硅宾与质子氢分子的氧化加成反应合成硅氢物种[J]. 有机化学, 2024, 44(4): 1311-1318. |
[15] | 侯梦莹, 王爱娥, 黄培强. 硝基化合物均相催化氢化研究进展[J]. 有机化学, 2024, 44(4): 1094-1105. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||