综述与进展

X类型硅基配体介导的碳氢官能化反应

  • 高吉慧 ,
  • 何川
展开
  • 南方科技大学化学系和格拉布斯研究院 广东深圳 518055

收稿日期: 2024-06-11

  修回日期: 2024-07-18

  网络出版日期: 2024-08-26

基金资助

国家自然科学基金(22122102); 国家自然科学基金(22271134); 广东省催化重点实验室(2020B121201002); 广东省珠江青年拔尖人才(2019QN01Y628); 深圳市科技创新委员会(RCJC20221008092723013); 深圳市科技创新委员会(JCYJ20230807093104009)

X-Type Silyl Ligands Mediated C—H Functionalization Reactions

  • Jihui Gao ,
  • Chuan He
Expand
  • Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055

Received date: 2024-06-11

  Revised date: 2024-07-18

  Online published: 2024-08-26

Supported by

National Natural Science Foundation of China(22122102); National Natural Science Foundation of China(22271134); Guangdong Provincial Key Laboratory of Catalysis(2020B121201002); Guangdong Pearl River Talent Program(2019QN01Y628); Shenzhen Science and Technology Innovation Committee(RCJC20221008092723013); Shenzhen Science and Technology Innovation Committee(JCYJ20230807093104009)

摘要

研究和发展新型配体对于过渡金属(TM)催化具有重要意义. 随着有机硅化学的快速发展, 综述X型硅基配体参与的过渡金属催化反应这一话题非常必要且具有吸引力. 探讨了硅基配体独特的σ-供电子能力和反位效应, 阐述了它们在碳氢官能化反应中对反应活性和选择性起到的关键作用. 此外, 还对该领域未来的发展趋势进行了展望, 希望能为催化合成化学领域提供新的思路和启发.

本文引用格式

高吉慧 , 何川 . X类型硅基配体介导的碳氢官能化反应[J]. 有机化学, 2025 , 45(2) : 641 -654 . DOI: 10.6023/cjoc202406014

Abstract

The development of novel ligands for transition-metal (TM) catalysis holds significant importance. With the rapid evolution of organosilicon chemistry, summarizing the topic of X-type silyl ligands for TM catalysis is appealing and timely. The unique σ-donating characteristics and trans-effects of silyl ligands are explored, and their pivotal role in enhancing the reactivity and selectivity of C—H functionalization reactions is elucidated. Furthermore, valuable insights into future advancements in this field are also prospected, with the goal of inspiring new applications and perspectives in the realm of catalytic synthetic chemistry.

参考文献

[1]
(a) Mayer, H. A.; Kaska, W. C. Chem. Rev. 1994, 94, 1239.
[1]
(b) Gordon, M. S.; Cundari, T. R. Coord. Chem. Rev. 1996, 147, 87.
[1]
(c) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.
[1]
(d) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976.
[1]
(e) Souillart, L.; Cramer, N. Chem. Rev. 2015, 115, 9410.
[1]
(f) Obligacion, J. V.; Chirik, P. J. Nat. Rev. Chem. 2018, 2, 15.
[2]
(a) Straub, B. F. Angew. Chem., Int. Ed. 2010, 49, 7622.
[2]
(b) Takaya, J.; Iwasawa, N. Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, Germany, 2014, pp. 229-247.
[2]
(c) Fernández-Alvarez, F. J.; Lalrempuia, R.; Oro, L. A. Coord. Chem. Rev. 2017, 350, 49.
[3]
(a) Green, M. L. H. J. Organomet. Chem. 1995, 500, 127.
[3]
(b) Hara, N.; Semba, K.; Nakao, Y. ACS Catal. 2022, 12, 1626.
[4]
(a) Hein, F.; Pobloth, H. Z. Anorg. Allg. Chem. 1941, 248, 84.
[4]
(b) Piper, T. S.; Lemal, D.; Wilkinson, G. Naturwissenschaften 1956, 43, 129.
[5]
Whited, M. T.; Taylor, B. L. H. Comments Inorg. Chem. 2020, 40, 217.
[6]
(a) Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coord. Chem. Rev. 1973, 10, 335.
[6]
(b) Haszeldine, R. N.; Parish, R. V.; Setchfield, J. H. J. Organomet. Chem. 1973, 57, 279.
[6]
(c) Aizenberg, M.; Milstein, D. J. Am. Chem. Soc. 1995, 117, 6456.
[6]
(d) Sola, E. Pincer Compd. 2018, 401.
[7]
(a) Rabaa, H.; Saillard, J. Y.; Schubert, U. J. Organomet. Chem. 1987, 330, 397.
[7]
(b) Corey, J. Y.; Braddock-Wilking, J. Chem. Rev. 1999, 99, 175.
[7]
(c) Corey, J. Y. Chem. Rev. 2016, 116, 11291.
[7]
(d) Fukumoto, Y.; Chatani, N. Organosilicon Chem. 2019, 171.
[8]
(a) Schubert, U. Adv. Organomet. Chem. 1990, 30, 151.
[8]
(b) Luo, X.-L.; Kubas, G. J.; Burns, C. J.; Bryan, J. C.; Unkefer, C. J. J. Am. Chem. Soc. 1995, 117, 1159.
[8]
(c) Corey, J. Y. Chem. Rev. 2011, 111, 863.
[9]
(a) Scherer, W.; Meixner, P.; Barquera-Lozada, J. E.; Hauf, C.; Obenhuber, A.; Brueck, A.; Wolstenholme, D. J.; Ruhland, K.; Leusser, D.; Stalke, D. Angew. Chem., Int. Ed. 2013, 52, 6092.
[9]
(b) Rios, P.; Fouilloux, H.; Vidossich, P.; Diez, J.; Lledos, A.; Conejero, S. Angew. Chem., Int. Ed. 2018, 57, 3217.
[9]
(c) Rios, P.; Fouilloux, H.; Diez, J.; Vidossich, P.; Lledos, A.; Conejero, S. Chem.-Eur. J. 2019, 25, 11346.
[9]
(d) Rios, P.; Conejero, S.; Fernandez, I. Chem.-Eur. J. 2022, 28, e202201920.
[10]
(a) Shimada, S.; Tanaka, M. Coord. Chem. Rev. 2006, 250, 991.
[10]
(b) Kuzu, I.; Krummenacher, I.; Meyer, J.; Armbruster, F.; Breher, F. Dalton Trans. 2008, 43, 5836.
[10]
(c) Simon, M.; Breher, F. Dalton Trans. 2017, 46, 7976.
[10]
(d) Kim, J. Bull. Korean Chem. Soc. 2022, 43, 538.
[10]
(e) Cabeza, J. A.; Garcia-Alvarez, P. Chem.-Eur. J. 2023, 29, e202203096.
[10]
(f) Gao, J.; Ge, Y.; He, C. Chem. Soc. Rev. 2024, 53, 4648.
[11]
Tilley, T. D. The Silicon-Heteroatom Bond, John Wiley & Sons Ltd, 1991, Chapter 9, p. 245.
[12]
(a) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
[12]
(b) Hartwig, J. F. J. Am. Chem. Soc. 2016, 138, 2.
[12]
(c) He, C.; Whitehurst, W. G.; Gaunt, M. J. Chem 2019, 5, 1031.
[12]
(d) Dalton, T.; Faber, T.; Glorius, F. ACS Cent. Sci. 2021, 7, 245.
[12]
(e) Wang, S.; Yan, F.; Wang, L.; Zhu, L. Chin. J. Org. Chem. 2018, 38, 291 (in Chinese).
[12]
(汪珊, 严沣, 汪连生, 朱磊, 有机化学, 2018, 38, 291.)
[12]
(f) Wu, Y.; Shi, B. Chin. J. Org. Chem. 2020, 40, 3517 (in Chinese).
[12]
(吴勇杰, 史炳锋, 有机化学, 2020, 40, 3517.)
[12]
(g) Liu, X.; Kuang, C.; Su, C. Acta Chim. Sinica 2022, 80, 1135 (in Chinese).
[12]
(刘霞, 匡春香, 苏长会, 化学学报, 2022, 80, 1135.)
[13]
(a) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
[13]
(b) Ros, A.; Fernandez, R.; Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229.
[13]
(c) Xu, L.; Wang, G.; Zhang, S.; Wang, H.; Wang, L.; Liu, L.; Jiao, J.; Li, P. Tetrahedron 2017, 73, 7123.
[14]
MacLean, D. F.; McDonald, R.; Ferguson, M. J.; Caddell, A. J.; Turculet, L. Chem. Commun. 2008, 5146.
[15]
Fang, H.; Choe, Y.-K.; Li, Y.; Shimada, S. Chem.-Asian J. 2011, 6, 2512.
[16]
Takaya, J.; Ito, S.; Nomoto, H.; Saito, N.; Kirai, N.; Iwasawa, N. Chem. Commun. 2015, 51, 176625.
[17]
Komuro, T.; Mochizuki, D.; Hashimoto, H.; Tobita, H. Dalton Trans. 2022, 51, 9983.
[18]
(a) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr.; Smith, M. R., III, Science 2002, 295, 305.
[18]
(b) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390.
[18]
(c) Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 14263.
[19]
(a) Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 7534.
[19]
(b) Ishiyama, T.; Isou, H.; Kikuchi, T.; Miyaura, N. Chem. Commun. 2010, 46, 159.
[19]
(c) Crawford, K. M.; Ramseyer, T. R.; Daley, C. J. A.; Clark, T. B. Angew. Chem., Int. Ed. 2014, 53, 7589.
[20]
Ghaffari, B.; Preshlock, S. M.; Plattner, D. L.; Staples, R. J.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E., Jr.; Smith, M. R., III, J. Am. Chem. Soc. 2014, 136, 14345.
[21]
Jiao, J.; Nie, W.; Song, P.; Li, P. Org. Biomol. Chem. 2021, 19, 355.
[22]
Takaya, J.; Kirai, N.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133, 12980.
[23]
Kirai, N.; Iguchi, S.; Ito, T.; Takaya, J.; Iwasawa, N. Bull. Chem. Soc. Jpn. 2013, 86, 784.
[24]
Lee, C.-I.; Zhou, J.; Ozerov, O. V. J. Am. Chem. Soc. 2013, 135, 3560.
[25]
Lee, C.-I.; Shih, W.-C.; Zhou, J.; Reibenspies, J. H.; Ozerov, O. V. Angew. Chem., Int. Ed. 2015, 54, 14003.
[26]
Lee, C.-I.; Hirscher, N. A.; Zhou, J.; Bhuvanesh, N.; Ozerov, O. V. Organometallics 2015, 34, 3099.
[27]
Hyland, S. N.; Meck, E. A.; Tortosa, M.; Clark, T. B. Tetrahedron Lett. 2019, 60, 1096.
[28]
Dannatt, J. E.; Yadav, A.; Smith, M. R., III; Maleczka, R. E., Jr. Tetrahedron 2022, 109, 132578.
[29]
Jones, M. R.; Fast, C. D.; Schley, N. D. J. Am. Chem. Soc. 2020, 142, 6488.
[30]
Kawazu, R.; Torigoe, T.; Kuninobu, Y. Angew. Chem., Int. Ed. 2022, 61, e202202327.
[31]
(a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946.
[31]
(b) Yuan, W.; He, C. Synthesis 2022, 54, 1939.
[31]
(c) Ge, Y.; Huang, X.; Ke, J.; He, C. Chem. Catal. 2022, 2, 2898.
[32]
Sangtrirutnugul, P.; Tilley, T. D. Organometallics 2007, 26, 5557.
[33]
Tobita, H.; Yamahira, N.; Ohta, K.; Komuro, T.; Okazaki, M. Pure Appl. Chem. 2008, 80, 1155.
[34]
Komuro, T.; Kitano, T.; Yamahira, N.; Ohta, K.; Okawara, S.; Mager, N.; Okazaki, M.; Tobita, H. Organometallics 2016, 35, 1209.
[35]
Kitano, T.; Komuro, T.; Ono, R.; Tobita, H. Organometallics 2017, 36, 2710.
[36]
Yang, B.; Tan, X.; Ge, Y.; Li, Y.; He, C. Org. Chem. Front. 2023, 10, 48620.
[37]
Yang, B.; Gao, J.; Tan, X.; Ge, Y.; He, C. Angew. Chem., Int. Ed. 2023, 62, e202307812.
文章导航

/