过渡金属催化C—H键硅基化反应构建硅杂环研究进展
收稿日期: 2024-06-17
修回日期: 2024-07-19
网络出版日期: 2024-08-26
基金资助
国家自然科学基金(22271260); 国家自然科学基金(22301285); 河南省科技研发计划联合基金重点项目(232301420007); 河南省自然科学基金(242300421033); 河南省自然科学基金(242300421120); 中国博士后科学基金(2023M743166)
Recent Progress in the Construction of Silacycles by Transition- Metal-Catalyzed C—H Silylation
Received date: 2024-06-17
Revised date: 2024-07-19
Online published: 2024-08-26
Supported by
National Natural Science Foundation of China(22271260); National Natural Science Foundation of China(22301285); Key Projects of the Joint Fund for Science and Technology of Henan Province(232301420007); Natural Science Foundation of Henan Province(242300421033); Natural Science Foundation of Henan Province(242300421120); China Postdoctoral Science Foundation(2023M743166)
刘泽水 , 郭桢桢 , 牛俊龙 . 过渡金属催化C—H键硅基化反应构建硅杂环研究进展[J]. 有机化学, 2025 , 45(2) : 423 -447 . DOI: 10.6023/cjoc202406022
Silacycles are essential structural motifs in silicon-containing functional molecules, which are widely used in the fields of synthetic chemistry, pharmaceutical and material science. As such, the development of efficient synthetic methods for these structurally diverse scaffolds is of great significance. Among these, due to its high atomic economy and step economy properties, transition-metal-catalyzed direct C—H silylation provides a powerful and straightforward synthetic method to form diverse silacycles. In this review, the recent progress in the construction of silacycles by transition-metal-catalyzed C(sp2)—H and C(sp3)—H silylation reactions is summarized.
Key words: silacycles; transition-metal; C—H activation; silylation; organosilicon compounds
| [1] | Rémond, E.; Martin, C.; Martinez, J.; Cavelier, F. Chem. Rev. 2016, 116, 11654. |
| [2] | (a) Bracegirdle, S.; Anderson, E. A. Chem. Soc. Rev. 2010, 39, 4114. |
| [2] | (b) Sore, H. F.; Galloway, W. R.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 1845. |
| [2] | (c) Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388. |
| [2] | (d) Ramesh, R.; Reddy, D. S. J. Med. Chem. 2018, 61, 3779. |
| [2] | (e) Ikeno, T.; Nagano, T.; Hanaoka, K. Chem.-Asian J. 2017, 12, 1435. |
| [2] | (f) Cai, Y.; Qin, A.; Tang, B. Z. J. Mater. Chem. C 2017, 5, 7375. |
| [2] | (g) Pham, L. D.; Nguyen, N. Q.; Hight, M. O.; Su, T. A. J. Mater. Chem. C 2021, 9, 11605. |
| [3] | (a) Bai, X.-F.; Zou, J.-F.; Chen, M.-Y.; Xu, Z.; Li, L.; Cui, Y.-M.; Zheng, Z.-J.; Xu, L.-W. Asian J. Org. Chem. 2017, 12, 1730. |
| [3] | (b) Chang, X.; Ma, P.-L.; Chen, H.-C.; Li, C.-Y.; Wang, P. Angew. Chem., Int. Ed. 2020, 59, 8937. |
| [3] | (c) Yang, B.; Gao, J.; Tan, X.; Ge, Y.; He, C. Angew. Chem., Int. Ed. 2023, 62, e202307812. |
| [3] | (d) Yang, B.; Tan, X.; Ge, Y.; Li, Y.; He, C. Org. Chem. Front. 2023, 10, 4862. |
| [4] | (a) Min, G. K.; Hernández, D.; Skrydstrup, T. Acc. Chem. Res. 2013, 46, 457. |
| [4] | (b) Fujii, S.; Hashimoto, Y. Future Med. Chem. 2017, 9, 485. |
| [5] | (a) Sanchez, J. C.; DiPasquale, A. G.; Rheingold, A. L.; Trogler, W. C. Chem. Mater. 2007, 19, 6459. |
| [5] | (b) Lu, G.; Usta, H.; Risko, C.; Wang, L.; Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 7670. |
| [5] | (c) Hou, J.; Chen, H.-Y.; Zhang, S.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2008, 130, 16144. |
| [6] | Farag, A. T.; Ibrahim, H. H. Birth Defects Res. 2007, 80, 12. |
| [7] | Mu, Q.-C.; Chen, J.; Xia, C.-G.; Xu, L.-W. Coordin. Chem. Rev. 2018, 374, 93. |
| [8] | (a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946. |
| [8] | (b) Han, J.-L.; Qin, Y.; Sun, Y.; Zhao, D. Sci. Sin. Chim. 2019, 49, 672. |
| [8] | (c) Ge, Y.; Huang, X.; Ke, J.; He, C. Chem. Catal. 2022, 2, 2898. |
| [8] | (d) Huang, J.; Liu, F.; Wu, X.; Chen, J.-Q.; Wu, J. Org. Chem. Front. 2022, 9, 2840. |
| [8] | (e) Huang, W.-S.; Wang, Q.; Yang, H.; Xu, L.-W. Synthesis 2022, 54, 5400. |
| [8] | (f) Liu, M.; Qi, L.; Zhao, D. Chin. J. Org. Chem. 2023, 43, 3508 (in Chinese). |
| [8] | (刘敏, 亓丽萍, 赵东兵, 有机化学, 2023, 43, 3508.) |
| [8] | (g) Li, L.; Huang, W.-S.; Xu, Z.; Xu, L.-W. Sci. China Chem. 2023, 66, 1654. |
| [8] | (h) Wu, Y.; Zheng, L.; Wang, Y.; Wang, P. Chem 2023, 9, 3461. |
| [8] | (i) Chen, H.; Hu, X.; Wang, W.; Gao, L.; Song, Z. Chem.-Eur. J. 2023, 29, e202302371. |
| [9] | Tsukada, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 5022. |
| [10] | Kuznetsov, A.; Gevorgyan, V. Org. Lett. 2012, 14, 914. |
| [11] | Kuznetsov, A.; Onishi, Y.; Inamoto, Y.; Gevorgyan, V. Org. Lett. 2013, 15, 2498. |
| [12] | Ureshino, T.; Yoshida, T.; Kuninobu, Y.; Takai, K. J. Am. Chem. Soc. 2010, 132, 14324. |
| [13] | Murai, M.; Okada, R.; Asako, S.; Takai, K. Chem.-Eur. J. 2017, 23, 10861. |
| [14] | Murai, M.; Okada, R.; Nishiyama, A.; Takai, K. Org. Lett. 2016, 18, 4380. |
| [15] | Kuninobu, Y.; Yamauchi, K.; Yamauchi, N.; Seiki, T.; Takai, K. Angew. Chem., Int. Ed. 2013, 52, 1520. |
| [16] | Murai, M.; Takeuchi, Y.; Yamauchi, K.; Kuninobu, Y.; Takai, K. Chem.-Eur. J. 2016, 22, 6048. |
| [17] | Zhang, Q.-W.; An, K.; Liu, L.-C.; Guo, S.; Jiang, C.; Guo, H.; He, W. Angew. Chem., Int. Ed. 2016, 55, 6319. |
| [18] | Zhang, L.; An, K.; Wang, Y.; Wu, Y.-D.; Zhang, X.; Yu, Z.-X.; He, W. J. Am. Chem. Soc. 2021, 143, 3571. |
| [19] | Zhang, Q.-W.; An, K.; Liu, L.-C.; Zhang, Q.; Guo, H.; He, W. Angew. Chem., Int. Ed. 2017, 56, 1125. |
| [20] | Mu, D.; Yuan, W.; Chen, S.; Wang, N.; Yang, B.; You, L.; Zu, B.; Yu, P.; He, C. J. Am. Chem. Soc. 2020, 142, 13459. |
| [21] | Ma, W.; Liu, L.-C.; An, K.; He, T.; He, W. Angew. Chem., Int. Ed. 2021, 60, 4245. |
| [22] | Yuan, W.; You, L.; Lin, W.; Ke, J.; Li, Y.; He, C. Org. Lett. 2021, 23, 1367. |
| [23] | Shibata, T.; Shizuno, T.; Sasaki, T. Chem. Commun. 2015, 51, 7802. |
| [24] | Zhang, Q.-W.; An, K.; Liu, L.-C.; Yue, Y.; He, W. Angew. Chem., Int. Ed. 2015, 54, 6918. |
| [25] | Murai, M.; Matsumoto, K.; Takeuchi, Y.; Takai, K. Org. Lett. 2015, 17, 3102. |
| [26] | Simmons, E. M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 17092. |
| [27] | Lee, T.; Wilson, T. W.; Berg, R.; Ryberg, P.; Hartwig, J. F. J. Am. Chem. Soc. 2015, 137, 6742. |
| [28] | Lee, T.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 4879. |
| [29] | Su, B.; Zhou, T.-G.; Li, X.-W.; Shao, X.-R.; Xu, P.-L.; Wu, W.-L.; Hartwig, J. F.; Shi, Z.-J. Angew. Chem., Int. Ed. 2017, 56, 1092. |
| [30] | Zhang, H.; Zhao, D. ACS Catal. 2021, 11, 10748. |
| [31] | Yamamoto, Y.; Tadano, R.; Yasui, T. JACS Au 2024, 4, 807. |
| [32] | Li, Q.; Driess, M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 8471. |
| [33] | Shen, B.; Pan, D.; Xie, W.; Li, X.-X.; Yu, S.; Huang, G.; Li, X. Angew. Chem., Int. Ed. 2024, 63, e202315230. |
| [34] | Lin, Y.; Jiang, K.-Z.; Cao, J.; Zheng, Z.-J.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. Adv. Synth. Catal. 2017, 359, 2247. |
| [35] | Wang, D.; Li, M.; Chen, X.; Wang, M.; Liang, Y.; Zhao, Y.; Houk, Y. N.; Shi, Z. Angew. Chem., Int. Ed. 2021, 60, 7066. |
| [36] | Xu, Y.; Sun, M.; Xu, W.; Deng, G.; Liang, Y.; Yang, Y. J. Am. Chem. Soc. 2023, 145, 15303. |
| [37] | Li, H.; Huang, W.-S.; Yang, K.-F.; Ye, F.; Yin, G.-W.; Xu, Z.; Xu, L.-W. Asian J. Org. Chem. 2021, 10, 2883. |
| [38] | Xu, Y.; Xu, W.; Chen, X.; Luo, X.; Lu, H.; Zhang, M.; Yang, X.; Deng, G.; Liang, Y.; Yang, Y. Chem. Sci. 2021, 12, 11756. |
| [39] | Omann, L.; Oestreich, M. Organometallics 2017, 36, 767. |
| [40] | Hua, Y.; Asgari, P.; Avullala, T.; Jeon, J. J. Am. Chem. Soc. 2016, 138, 7982. |
| [41] | Zhao, W.-T.; Lu, Z.-Q.; Zheng, H.; Xue, X.-S.; Zhao, D. ACS Catal. 2018, 8, 7997. |
| [42] | Chen, S.; Mu, D.; Mai, P.-L.; Ke, J.; Li, Y.; He, C. Nat. Commun. 2021, 12, 1249. |
| [43] | Xian, J.; Sheng, X.; Lin, Y.; Sun, Z.; Chen, C.; Zhou, K.; Peng, C.; Li, B.; Chen, X.; Xie, F. Adv. Synth. Catal. 2024, 366, 1763. |
| [44] | Shibata, T.; Uno, N.; Sasaki, T.; Takano, H.; Sato, T.; Kanyiva, K. S. J. Org. Chem. 2018, 83, 3426. |
| [45] | Zhu, M.-H.; Zhang, X.-W.; Usman, M.; Cong, H.; Liu, W.-B. ACS Catal. 2021, 11, 5703. |
| [46] | Wang, X.-C.; Wang, H.-R.; Xu, X.; Zhao, D. Eur. J. Org. Chem. 2021, 3039. |
| [47] | Simmons, E. M.; Hartwig, J. F. Nature 2012, 483, 70. |
| [48] | Li, B.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 6586. |
| [49] | Wilson, J. W.; Su, B.; Yoritate, M.; Shi, J. X.; Hartwig, J. F. J. Am. Chem. Soc. 2023, 145, 19490. |
| [50] | Su, B.; Lee, T.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 18032. |
| [51] | Ghavtadze, N.; Melkonyan, F. S.; Gulevich, A. V.; Huang, C.; Gevorgyan, V. Nat. Chem. 2014, 6, 122. |
| [52] | Kuninobu, Y.; Nakahara, T.; Takeshima, H.; Takai, K. Org. Lett. 2013, 15, 426. |
| [53] | Murai, M.; Takeshima, H.; Morita, H.; Kuninobu, Y.; Takai, K. J. Org. Chem. 2015, 80, 5407. |
| [54] | Su, B.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 12137. |
| [55] | Zhang, M.; Liang, J.; Huang, G. J. Org. Chem. 2019, 84, 2372. |
| [56] | Fang, H.; Hou, W.; Liu, G.; Huang, Z. J. Am. Chem. Soc. 2017, 139, 11601. |
| [57] | Wang, Z.; Fang, H.; Liu, G.; Huang, Z. Org. Lett. 2021, 23, 7603. |
| [58] | Yang, B.; Yang, W.; Guo, Y.; You, L.; He, C. Angew. Chem., Int. Ed. 2020, 59, 22217. |
| [59] | Lee, T.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 8723. |
| [60] | Hua, Y.; Jung, S.; Roh, J.; Jeon, J. J. Org. Chem. 2015, 80, 4661. |
| [61] | Karmel, C.; Li, B.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 1460. |
| [62] | Guo, Y.; Liu, M.-M.; Zhu, X.; Zhu, L.; He, C. Angew. Chem., Int. Ed. 2021, 60, 13887. |
/
| 〈 |
|
〉 |