综述与进展

过渡金属催化C—H键硅基化反应构建硅杂环研究进展

  • 刘泽水 ,
  • 郭桢桢 ,
  • 牛俊龙
展开
  • 郑州大学化学学院、平原实验室 郑州 450001

收稿日期: 2024-06-17

  修回日期: 2024-07-19

  网络出版日期: 2024-08-26

基金资助

国家自然科学基金(22271260); 国家自然科学基金(22301285); 河南省科技研发计划联合基金重点项目(232301420007); 河南省自然科学基金(242300421033); 河南省自然科学基金(242300421120); 中国博士后科学基金(2023M743166)

Recent Progress in the Construction of Silacycles by Transition- Metal-Catalyzed C—H Silylation

  • Zeshui Liu ,
  • Zhenzhen Guo ,
  • Junlong Niu
Expand
  • College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001

Received date: 2024-06-17

  Revised date: 2024-07-19

  Online published: 2024-08-26

Supported by

National Natural Science Foundation of China(22271260); National Natural Science Foundation of China(22301285); Key Projects of the Joint Fund for Science and Technology of Henan Province(232301420007); Natural Science Foundation of Henan Province(242300421033); Natural Science Foundation of Henan Province(242300421120); China Postdoctoral Science Foundation(2023M743166)

摘要

硅杂环是含硅功能分子中非常重要的结构单元, 在合成化学、药物化学和材料化学等领域具有的广泛应用, 发展结构多样化硅杂环的高效合成新方法对推动其应用研究具有重要意义. 其中, 过渡金属催化C—H键直接硅基化具有高原子经济性和步骤经济性的特点, 目前已成为构建结构复杂的硅杂环化合物的一种重要方法. 总结了近年来过渡金属催化C(sp2)—H键和C(sp3)—H键硅基化反应构筑硅杂环的研究进展.

本文引用格式

刘泽水 , 郭桢桢 , 牛俊龙 . 过渡金属催化C—H键硅基化反应构建硅杂环研究进展[J]. 有机化学, 2025 , 45(2) : 423 -447 . DOI: 10.6023/cjoc202406022

Abstract

Silacycles are essential structural motifs in silicon-containing functional molecules, which are widely used in the fields of synthetic chemistry, pharmaceutical and material science. As such, the development of efficient synthetic methods for these structurally diverse scaffolds is of great significance. Among these, due to its high atomic economy and step economy properties, transition-metal-catalyzed direct C—H silylation provides a powerful and straightforward synthetic method to form diverse silacycles. In this review, the recent progress in the construction of silacycles by transition-metal-catalyzed C(sp2)—H and C(sp3)—H silylation reactions is summarized.

参考文献

[1]
Rémond, E.; Martin, C.; Martinez, J.; Cavelier, F. Chem. Rev. 2016, 116, 11654.
[2]
(a) Bracegirdle, S.; Anderson, E. A. Chem. Soc. Rev. 2010, 39, 4114.
[2]
(b) Sore, H. F.; Galloway, W. R.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 1845.
[2]
(c) Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388.
[2]
(d) Ramesh, R.; Reddy, D. S. J. Med. Chem. 2018, 61, 3779.
[2]
(e) Ikeno, T.; Nagano, T.; Hanaoka, K. Chem.-Asian J. 2017, 12, 1435.
[2]
(f) Cai, Y.; Qin, A.; Tang, B. Z. J. Mater. Chem. C 2017, 5, 7375.
[2]
(g) Pham, L. D.; Nguyen, N. Q.; Hight, M. O.; Su, T. A. J. Mater. Chem. C 2021, 9, 11605.
[3]
(a) Bai, X.-F.; Zou, J.-F.; Chen, M.-Y.; Xu, Z.; Li, L.; Cui, Y.-M.; Zheng, Z.-J.; Xu, L.-W. Asian J. Org. Chem. 2017, 12, 1730.
[3]
(b) Chang, X.; Ma, P.-L.; Chen, H.-C.; Li, C.-Y.; Wang, P. Angew. Chem., Int. Ed. 2020, 59, 8937.
[3]
(c) Yang, B.; Gao, J.; Tan, X.; Ge, Y.; He, C. Angew. Chem., Int. Ed. 2023, 62, e202307812.
[3]
(d) Yang, B.; Tan, X.; Ge, Y.; Li, Y.; He, C. Org. Chem. Front. 2023, 10, 4862.
[4]
(a) Min, G. K.; Hernández, D.; Skrydstrup, T. Acc. Chem. Res. 2013, 46, 457.
[4]
(b) Fujii, S.; Hashimoto, Y. Future Med. Chem. 2017, 9, 485.
[5]
(a) Sanchez, J. C.; DiPasquale, A. G.; Rheingold, A. L.; Trogler, W. C. Chem. Mater. 2007, 19, 6459.
[5]
(b) Lu, G.; Usta, H.; Risko, C.; Wang, L.; Facchetti, A.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 7670.
[5]
(c) Hou, J.; Chen, H.-Y.; Zhang, S.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2008, 130, 16144.
[6]
Farag, A. T.; Ibrahim, H. H. Birth Defects Res. 2007, 80, 12.
[7]
Mu, Q.-C.; Chen, J.; Xia, C.-G.; Xu, L.-W. Coordin. Chem. Rev. 2018, 374, 93.
[8]
(a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946.
[8]
(b) Han, J.-L.; Qin, Y.; Sun, Y.; Zhao, D. Sci. Sin. Chim. 2019, 49, 672.
[8]
(c) Ge, Y.; Huang, X.; Ke, J.; He, C. Chem. Catal. 2022, 2, 2898.
[8]
(d) Huang, J.; Liu, F.; Wu, X.; Chen, J.-Q.; Wu, J. Org. Chem. Front. 2022, 9, 2840.
[8]
(e) Huang, W.-S.; Wang, Q.; Yang, H.; Xu, L.-W. Synthesis 2022, 54, 5400.
[8]
(f) Liu, M.; Qi, L.; Zhao, D. Chin. J. Org. Chem. 2023, 43, 3508 (in Chinese).
[8]
(刘敏, 亓丽萍, 赵东兵, 有机化学, 2023, 43, 3508.)
[8]
(g) Li, L.; Huang, W.-S.; Xu, Z.; Xu, L.-W. Sci. China Chem. 2023, 66, 1654.
[8]
(h) Wu, Y.; Zheng, L.; Wang, Y.; Wang, P. Chem 2023, 9, 3461.
[8]
(i) Chen, H.; Hu, X.; Wang, W.; Gao, L.; Song, Z. Chem.-Eur. J. 2023, 29, e202302371.
[9]
Tsukada, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 5022.
[10]
Kuznetsov, A.; Gevorgyan, V. Org. Lett. 2012, 14, 914.
[11]
Kuznetsov, A.; Onishi, Y.; Inamoto, Y.; Gevorgyan, V. Org. Lett. 2013, 15, 2498.
[12]
Ureshino, T.; Yoshida, T.; Kuninobu, Y.; Takai, K. J. Am. Chem. Soc. 2010, 132, 14324.
[13]
Murai, M.; Okada, R.; Asako, S.; Takai, K. Chem.-Eur. J. 2017, 23, 10861.
[14]
Murai, M.; Okada, R.; Nishiyama, A.; Takai, K. Org. Lett. 2016, 18, 4380.
[15]
Kuninobu, Y.; Yamauchi, K.; Yamauchi, N.; Seiki, T.; Takai, K. Angew. Chem., Int. Ed. 2013, 52, 1520.
[16]
Murai, M.; Takeuchi, Y.; Yamauchi, K.; Kuninobu, Y.; Takai, K. Chem.-Eur. J. 2016, 22, 6048.
[17]
Zhang, Q.-W.; An, K.; Liu, L.-C.; Guo, S.; Jiang, C.; Guo, H.; He, W. Angew. Chem., Int. Ed. 2016, 55, 6319.
[18]
Zhang, L.; An, K.; Wang, Y.; Wu, Y.-D.; Zhang, X.; Yu, Z.-X.; He, W. J. Am. Chem. Soc. 2021, 143, 3571.
[19]
Zhang, Q.-W.; An, K.; Liu, L.-C.; Zhang, Q.; Guo, H.; He, W. Angew. Chem., Int. Ed. 2017, 56, 1125.
[20]
Mu, D.; Yuan, W.; Chen, S.; Wang, N.; Yang, B.; You, L.; Zu, B.; Yu, P.; He, C. J. Am. Chem. Soc. 2020, 142, 13459.
[21]
Ma, W.; Liu, L.-C.; An, K.; He, T.; He, W. Angew. Chem., Int. Ed. 2021, 60, 4245.
[22]
Yuan, W.; You, L.; Lin, W.; Ke, J.; Li, Y.; He, C. Org. Lett. 2021, 23, 1367.
[23]
Shibata, T.; Shizuno, T.; Sasaki, T. Chem. Commun. 2015, 51, 7802.
[24]
Zhang, Q.-W.; An, K.; Liu, L.-C.; Yue, Y.; He, W. Angew. Chem., Int. Ed. 2015, 54, 6918.
[25]
Murai, M.; Matsumoto, K.; Takeuchi, Y.; Takai, K. Org. Lett. 2015, 17, 3102.
[26]
Simmons, E. M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 17092.
[27]
Lee, T.; Wilson, T. W.; Berg, R.; Ryberg, P.; Hartwig, J. F. J. Am. Chem. Soc. 2015, 137, 6742.
[28]
Lee, T.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 4879.
[29]
Su, B.; Zhou, T.-G.; Li, X.-W.; Shao, X.-R.; Xu, P.-L.; Wu, W.-L.; Hartwig, J. F.; Shi, Z.-J. Angew. Chem., Int. Ed. 2017, 56, 1092.
[30]
Zhang, H.; Zhao, D. ACS Catal. 2021, 11, 10748.
[31]
Yamamoto, Y.; Tadano, R.; Yasui, T. JACS Au 2024, 4, 807.
[32]
Li, Q.; Driess, M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 8471.
[33]
Shen, B.; Pan, D.; Xie, W.; Li, X.-X.; Yu, S.; Huang, G.; Li, X. Angew. Chem., Int. Ed. 2024, 63, e202315230.
[34]
Lin, Y.; Jiang, K.-Z.; Cao, J.; Zheng, Z.-J.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. Adv. Synth. Catal. 2017, 359, 2247.
[35]
Wang, D.; Li, M.; Chen, X.; Wang, M.; Liang, Y.; Zhao, Y.; Houk, Y. N.; Shi, Z. Angew. Chem., Int. Ed. 2021, 60, 7066.
[36]
Xu, Y.; Sun, M.; Xu, W.; Deng, G.; Liang, Y.; Yang, Y. J. Am. Chem. Soc. 2023, 145, 15303.
[37]
Li, H.; Huang, W.-S.; Yang, K.-F.; Ye, F.; Yin, G.-W.; Xu, Z.; Xu, L.-W. Asian J. Org. Chem. 2021, 10, 2883.
[38]
Xu, Y.; Xu, W.; Chen, X.; Luo, X.; Lu, H.; Zhang, M.; Yang, X.; Deng, G.; Liang, Y.; Yang, Y. Chem. Sci. 2021, 12, 11756.
[39]
Omann, L.; Oestreich, M. Organometallics 2017, 36, 767.
[40]
Hua, Y.; Asgari, P.; Avullala, T.; Jeon, J. J. Am. Chem. Soc. 2016, 138, 7982.
[41]
Zhao, W.-T.; Lu, Z.-Q.; Zheng, H.; Xue, X.-S.; Zhao, D. ACS Catal. 2018, 8, 7997.
[42]
Chen, S.; Mu, D.; Mai, P.-L.; Ke, J.; Li, Y.; He, C. Nat. Commun. 2021, 12, 1249.
[43]
Xian, J.; Sheng, X.; Lin, Y.; Sun, Z.; Chen, C.; Zhou, K.; Peng, C.; Li, B.; Chen, X.; Xie, F. Adv. Synth. Catal. 2024, 366, 1763.
[44]
Shibata, T.; Uno, N.; Sasaki, T.; Takano, H.; Sato, T.; Kanyiva, K. S. J. Org. Chem. 2018, 83, 3426.
[45]
Zhu, M.-H.; Zhang, X.-W.; Usman, M.; Cong, H.; Liu, W.-B. ACS Catal. 2021, 11, 5703.
[46]
Wang, X.-C.; Wang, H.-R.; Xu, X.; Zhao, D. Eur. J. Org. Chem. 2021, 3039.
[47]
Simmons, E. M.; Hartwig, J. F. Nature 2012, 483, 70.
[48]
Li, B.; Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 6586.
[49]
Wilson, J. W.; Su, B.; Yoritate, M.; Shi, J. X.; Hartwig, J. F. J. Am. Chem. Soc. 2023, 145, 19490.
[50]
Su, B.; Lee, T.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 18032.
[51]
Ghavtadze, N.; Melkonyan, F. S.; Gulevich, A. V.; Huang, C.; Gevorgyan, V. Nat. Chem. 2014, 6, 122.
[52]
Kuninobu, Y.; Nakahara, T.; Takeshima, H.; Takai, K. Org. Lett. 2013, 15, 426.
[53]
Murai, M.; Takeshima, H.; Morita, H.; Kuninobu, Y.; Takai, K. J. Org. Chem. 2015, 80, 5407.
[54]
Su, B.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 12137.
[55]
Zhang, M.; Liang, J.; Huang, G. J. Org. Chem. 2019, 84, 2372.
[56]
Fang, H.; Hou, W.; Liu, G.; Huang, Z. J. Am. Chem. Soc. 2017, 139, 11601.
[57]
Wang, Z.; Fang, H.; Liu, G.; Huang, Z. Org. Lett. 2021, 23, 7603.
[58]
Yang, B.; Yang, W.; Guo, Y.; You, L.; He, C. Angew. Chem., Int. Ed. 2020, 59, 22217.
[59]
Lee, T.; Hartwig, J. F. Angew. Chem., Int. Ed. 2016, 55, 8723.
[60]
Hua, Y.; Jung, S.; Roh, J.; Jeon, J. J. Org. Chem. 2015, 80, 4661.
[61]
Karmel, C.; Li, B.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 1460.
[62]
Guo, Y.; Liu, M.-M.; Zhu, X.; Zhu, L.; He, C. Angew. Chem., Int. Ed. 2021, 60, 13887.
文章导航

/