综述与进展

光/镍协同催化实现C(sp3)—H键选择性官能团化

  • 王晓琴 ,
  • 许盛 ,
  • 平媛媛 ,
  • 孔望清
展开
  • 武汉大学高等研究院 武汉 430072

收稿日期: 2024-06-22

  修回日期: 2024-07-23

  网络出版日期: 2024-08-26

基金资助

国家自然科学基金(22171215); 国家自然科学基金(22301225); 湖北省杰出青年基金(2022CFA092); 湖北省自然科学基金(2023AFB034); 广东省基础与应用基础研究基金(2022A1515010246); 广东省基础与应用基础研究基金(2022A1515110113)

Selective Functionalization of C(sp3)—H Bonds via Photoredox/ Nickel Dual Catalysis

  • Xiaoqin Wang ,
  • Sheng Xu ,
  • Yuanyuan Ping ,
  • Wangqing Kong
Expand
  • Institute for Advanced Studies, Wuhan University, Wuhan 430072

Received date: 2024-06-22

  Revised date: 2024-07-23

  Online published: 2024-08-26

Supported by

National Natural Science Foundation of China(22171215); National Natural Science Foundation of China(22301225); Hubei Provincial Outstanding Youth Fund(2022CFA092); Hubei Provincial Natural Science Foundation(2023AFB034); Guangdong Basic and Applied Basic Research Foundation(2022A1515010246); Guangdong Basic and Applied Basic Research Foundation(2022A1515110113)

摘要

通过C(sp3)—H官能化将易获取的碳氢化合物转化为高附加值化合物引起了学术界和工业界的极大兴趣. 这种转化无疑是一种革命性的方法, 因为它具有固有的原子和步骤经济性, 以及起始材料的丰富性. 经典的过渡金属催化下的C(sp3)—H活化通常需要贵金属催化剂、高温和配位导向基团. 近年来, 光催化领域的快速发展为惰性的C(sp3)—H键活化提供了新的手段. 光诱导的碳氢键断裂和过渡金属镍催化交叉偶联反应的结合已成为C(sp3)—H键选择性功能化的有力工具. 综述了光/镍协同催化下C(sp3)—H键选择性官能团化反应.

本文引用格式

王晓琴 , 许盛 , 平媛媛 , 孔望清 . 光/镍协同催化实现C(sp3)—H键选择性官能团化[J]. 有机化学, 2025 , 45(2) : 383 -422 . DOI: 10.6023/cjoc202406036

Abstract

The conversion of readily available hydrocarbons into high value-added chiral compounds via C(sp3)—H functionalization has attracted a great deal of interest from both academia and industry. This transformation is undoubtedly a revolutionary approach due to its inherent atom and step economy, as well as the abundance of starting materials. Classical transition- metal-catalyzed C—H activation usually requires noble metal catalysts, high temperatures, and coordinated directing groups. In recent years, the rapid development of the field of photocatalysis has provided new methods for the activation of inert C(sp3)—H bonds. The combination of photoinduced C(sp3)—H bond cleavage and nickel-catalyzed cross-coupling reactions has emerged as a powerful tool for the selective functionalization of C(sp3)—H bonds. Herein, the recent progress in selective C(sp3)—H functionalization via photoredox/nickel dual catalysis is summarized.

参考文献

[1]
Lovering, F. MedChemComm 2013, 4, 515.
[2]
Rudolph, A.; Lautens, M. Angew. Chem. Int. Ed. 2009, 48, 2656.
[3]
Choi, J.; Fu, G. C. Science 2017, 356, eaaf7230.
[4]
Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
[5]
Diccianni, J. B.; Diao, T. Trends Chem. 2019, 1, 830.
[6]
Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; Mao, E.; Millet, A.; Oakley, J. V.; Reed, N. L.; Sakai, H. A.; Seath, C. P.; MacMillan, D. W. C. Chem. Rev. 2022, 122, 1485.
[7]
Li, Z.; Li, C.; Ding, Y.; Huo, H., Coord. Chem. Rev. 2022, 460, 214479.
[8]
Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437.
[9]
Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
[10]
Corcé, V.; Chamoreau, L.-M.; Derat, E.; Goddard, J.-P.; Ollivier, C.; Fensterbank, L. Angew. Chem. Int. Ed. 2015, 54, 11414.
[11]
Gutiérrez-Bonet, á.; Tellis, J. C.; Matsui, J. K.; Vara, B. A.; Molander, G. A. ACS Catal. 2016, 6, 8004.
[12]
Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 13862.
[13]
Vara, B. A.; Patel, N. R.; Molander, G. A. ACS Catal. 2017, 7, 3955.
[14]
Smith, R. T.; Zhang, X.; Rincón, J. A.; Agejas, J.; Mateos, C.; Barberis, M.; García-Cerrada, S.; de Frutos, O.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 17433
[15]
Dong, Z.; MacMillan, D. W. C. Nature 2021, 598, 451.
[16]
Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
[17]
Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
[18]
Bellotti, P.; Huang, H.-M.; Faber, T.; Glorius, F. Chem. Rev. 2023, 123, 4237.
[19]
Qin, Q.; Jiang, H.; Hu, Z.; Ren, D.; Yu, S. Chem. Rec. 2017, 17, 754.
[20]
Cao, H.; Tang, X.; Tang, H.; Yuan, Y.; Wu, J. Chem Catal. 2021, 1, 523.
[21]
Capaldo, L.; Ravelli, D.; Fagnoni, M. Chem. Rev. 2022, 122, 1875.
[22]
Zhang, J.; Rueping, M. Chem. Soc. Rev. 2023, 52, 4099.
[23]
McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011, 334, 1114.
[24]
Ahneman, D. T.; Doyle, A. G. Chem. Sci. 2016, 7, 7002.
[25]
Gui, Y.-Y.; Wang, Z.-X.; Zhou, W.-J.; Liao, L.-L.; Song, L.; Yin, Z.-B.; Li, J.; Yu, D.-G. Asian J. Org. Chem. 2018, 7, 537.
[26]
Gui, Y.-Y.; Liao, L.-L.; Sun, L.; Zhang, Z.; Ye, J.-H.; Shen, G.; Lu, Z.-P.; Zhou, W.-J.; Yu, D.-G. Chem. Commun. 2017, 53, 1192.
[27]
Joe, C. L.; Doyle, A. G. Angew. Chem. Int. Ed. 2016, 55, 4040.
[28]
Kim, W.; Koo, J.; Lee, H. G. Chem. Sci. 2021, 12, 4119.
[29]
Cheng, C.; Lv, G.-F.; Wu, S.; Li, Y.; Li, J.-H. Org. Lett. 2023, 25, 4236.
[30]
Liu, K.; Studer, A. Angew. Chem. Int. Ed. 2022, 61, e202206533.
[31]
Cannalire, R.; Pelliccia, S.; Sancineto, L.; Novellino, E.; Tron, G. C.; Giustiniano, M. Chem. Soc. Rev. 2021, 50, 766.
[32]
Rosemann, N. W.; Eu?ner, J. P.; Beyer, A.; Koch, S. W.; Volz, K.; Dehnen, S.; Chatterjee, S. Science 2016, 352, 1301.
[33]
Maity, B.; Zhu, C.; Yue, H.; Huang, L.; Harb, M.; Minenkov, Y.; Rueping, M.; Cavallo, L. J. Am. Chem. Soc. 2020, 142, 16942.
[34]
Twilton, J.; Christensen, M.; DiRocco, D. A.; Ruck, R. T.; Davies, I. W.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2018, 57, 5369.
[35]
Gui, Y.-Y.; Chen, X.-W.; Zhou, W.-J.; Yu, D.-G. Synlett 2017, 28, 2581.
[36]
Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W. C. Nature 2017, 547, 79.
[37]
Ma, Z.-Y.; Li, M.; Guo, L.-N.; Liu, L.; Wang, D.; Duan, X.-H. Org. Lett. 2021, 23, 474.
[38]
Dong, M.; Jia, Y.; Zhou, W.; Gao, J.; Lv, X.; Luo, F.; Zhang, Y.; Liu, S. Org. Chem. Front. 2021, 8, 6881.
[39]
Chu, J. C. K.; Rovis, T. Nature 2016, 539, 272.
[40]
Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.
[41]
Thullen, S. M.; Treacy, S. M.; Rovis, T. J. Am. Chem. Soc. 2019, 141, 14062.
[42]
Xu, B.; Tambar, U. K. ACS Catal. 2019, 9, 4627.
[43]
Kanegusuku, A. L. G.; Castanheiro, T.; Ayer, S. K.; Roizen, J. L. Org. Lett. 2019, 21, 6089.
[44]
Simons, R. T.; Nandakumar, M.; Kwon, K.; Ayer, S. K.; Venneti, N. M.; Roizen, J. L. J. Am. Chem. Soc. 2023, 145, 3882.
[45]
Zhang, P.; Le, C. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 8084.
[46]
Wang, Z.; Ji, X.; Han, T.; Deng, G.-J.; Huang, H. Adv. Synth. Catal. 2019, 361, 5643.
[47]
Rand, A. W.; Yin, H.; Xu, L.; Giacoboni, J.; Martin-Montero, R.; Romano, C.; Montgomery, J.; Martin, R. ACS Catal. 2020, 10, 4671.
[48]
Yue, W.-J.; Day, C. S.; Martin, R. J. Am. Chem. Soc. 2021, 143, 6395.
[49]
Rand, A. W.; Chen, M.; Montgomery, J. Chem. Sci. 2022, 13, 10566.
[50]
Kawasaki, T.; Ishida, N.; Murakami, M. J. Am. Chem. Soc. 2020, 142, 3366.
[51]
Griffiths, O. M.; Esteves, H. A.; Chen, Y.; Sowa, K.; May, O. S.; Morse, P.; Blakemore, D. C.; Ley, S. V. J. Org. Chem. 2021, 86, 13559.
[52]
Ishida, N.; Son, M.; Kawasaki, T.; Ito, M.; Murakami, M. Synlett 2021, 32, 2067.
[53]
Ishida, N.; Shinoya, H.; Kamino, Y.; Kawasaki, T.; Murakami, M. Chem. Lett. 2022, 51, 765.
[54]
Kawasaki, T.; Tosaki, T.; Ishida, N.; Murakami, M. Org. Lett. 2021, 23, 7683.
[55]
Kawasaki, T.; Tosaki, T.; Miki, S.; Takada, T.; Murakami, M.; Ishida, N. J. Am. Chem. Soc. 2024, 146, 17566.
[56]
Wang, Q.-L.; Huang, H.; Mao, G.; Deng, G.-J. Green Chem. 2022, 24, 8324.
[57]
Kawasaki, T.; Yamazaki, K.; Tomono, R.; Ishida, N.; Murakami, M. Chem. Lett. 2021, 50, 1684.
[58]
Huang, L.; Szewczyk, M.; Kancherla, R.; Maity, B.; Zhu, C.; Cavallo, L.; Rueping, M. Nat. Commun. 2023, 14, 548.
[59]
Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev. 2017, 117, 9016.
[60]
Scaiano, J. C.; Wubbels, G. G. J. Am. Chem. Soc. 1981, 103, 640.
[61]
Vasilopoulos, A.; Krska, S. W.; Stahl, S. S. Science 2021, 372, 398.
[62]
Gong, Y.; Su, L.; Zhu, Z.; Ye, Y.; Gong, H. Angew. Chem. Int. Ed. 2022, 61, e202201662.
[63]
Chen, M.; Ventura, A. M.; Das, S.; Ibrahim, A. F.; Zimmerman, P. M.; Montgomery, J. J. Am. Chem. Soc. 2023, 145, 20176.
[64]
Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M. J. Am. Chem. Soc. 2017, 139, 2204.
[65]
Huang, H.-M.; Bellotti, P.; Chen, P.-P.; Houk, K. N.; Glorius, F. Nat. Synth. 2022, 1, 59.
[66]
Ravelli, D.; Fagnoni, M.; Fukuyama, T.; Nishikawa, T.; Ryu, I. ACS Catal. 2018, 8, 701.
[67]
Perez-Prieto, J.; Galian, R.; Miranda, M. Mini-Rev. Org. Chem 2006, 3, 117.
[68]
Waele, V. D.; Poizat, O.; Fagnoni, M.; Bagno, A.; Ravelli, D. ACS Catal. 2016, 6, 7174.
[69]
Perry, I. B.; Brewer, T. F.; Sarver, P. J.; Schultz, D. M.; DiRocco, D. A.; MacMillan, D. W. C. Nature 2018, 560, 70.
[70]
Mazzarella, D.; Pulcinella, A.; Bovy, L.; Broersma, R.; No?l, T. Angew. Chem. Int. Ed. 2021, 60, 21277.
[71]
Liu, W.; Ke, Y.; Liu, C.; Kong, W. Chem. Commun. 2022, 58, 11937.
[72]
Jin, Y.; Ng, E. W. H.; Fan, T.; Hirao, H.; Gong, L.-Z. ACS Catal. 2022, 12, 10039.
[73]
Pilli, R.; Selvam, K.; Balamurugan, B. S. S.; Jose, V.; Rasappan, R. Org. Lett. 2024, 26, 2993.
[74]
Hu, Z.; Wang, D.; Xu, T. ACS Catal. 2024, 14, 547.
[75]
Bour, J. R.; Ferguson, D. M.; McClain, E. J.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2019, 141, 8914.
[76]
Tsymbal, A. V.; Bizzini, L. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2022, 144, 21278.
[77]
Mao, E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2023, 145, 2787.
[78]
Wang, Q.; Ni, S.; Yu, L.; Pan, Y.; Wang, Y. ACS Catal. 2022, 12, 11071.
[79]
Zhou, S.; Liu, T.; Bao, X. J. Catal. 2022, 415, 142.
[80]
Xu, L., F., W., Chen, F., Zhu, S., Chu, L. Chin. J. Org. Chem. 2022, 42, 1.
[81]
Xu, S.; Chen, H.; Zhou, Z.; Kong, W. Angew. Chem. Int. Ed. 2021, 60, 7405.
[82]
Wang, D.; Ackermann, L. Chem. Sci. 2022, 13, 7256.
[83]
Liu, W.; Liu, C.; Wang, M.; Kong, W. ACS Catal. 2022, 12, 10207.
[84]
Wagner, P. J.; Kemppainen, A. E.; Schott, H. N. J. Am. Chem. Soc. 1970, 92, 5280.
[85]
Péter, á.; Agasti, S.; Knowles, O.; Pye, E.; Procter, D. J. Chem. Soc. Rev. 2021, 50, 5349.
[86]
Shen, Y.; Gu, Y.; Martin, R. J. Am. Chem. Soc. 2018, 140, 12200.
[87]
Dewanji, A.; Krach, P. E.; Rueping, M. Angew. Chem. Int. Ed. 2019, 58, 3566.
[88]
Krach, P. E.; Dewanji, A.; Yuan, T.; Rueping, M. Chem. Commun. 2020, 56, 6082.
[89]
Ren, C.-C.; Wang, T.-Q.; Zhang, Y.; Peng, D.; Liu, X.-Q.; Wu, Q.-A.; Liu, X.-F.; Luo, S.-P. ChemistrySelect 2021, 6, 2523.
[90]
Ishida, N.; Masuda, Y.; Imamura, Y.; Yamazaki, K.; Murakami, M. J. Am. Chem. Soc. 2019, 141, 19611.
[91]
Xu, Z.; Liu, D.; Yu, H.; Ahlquist, M. S. G.; Fu, Y. Mol. Catal. 2021, 514, 111785.
[92]
Campbell, M. W.; Yuan, M.; Polites, V. C.; Gutierrez, O.; Molander, G. A. J. Am. Chem. Soc. 2021, 143, 3901.
[93]
Zhang, L.; Si, X.; Yang, Y.; Zimmer, M.; Witzel, S.; Sekine, K.; Rudolph, M.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2019, 58, 1823.
[94]
Si, X.; Zhang, L.; Hashmi, A. S. K. Org. Lett. 2019, 21, 6329.
[95]
Heitz, D. R.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 12715.
[96]
Ishida, N.; Masuda, Y.; Ishikawa, N.; Murakami, M. Asian J. Org. Chem. 2017, 6, 669.
[97]
Huang, L.; Rueping, M. Angew. Chem. Int. Ed. 2018, 57, 10333.
[98]
Santos, M. S.; Corrêa, A. G.; Paix?o, M. W.; K?nig, B. Adv. Synth. Catal. 2020, 362, 2367.
[99]
Kancherla, R.; Muralirajan, K.; Maity, B.; Karuthedath, S.; Kumar, G. S.; Laquai, F.; Cavallo, L.; Rueping, M. Nat. Commun. 2022, 13, 2737.
[100]
Shields, B. J.; Doyle, A. G. J. Am. Chem. Soc. 2016, 138, 12719.
[101]
Nielsen, M. K.; Shields, B. J.; Liu, J.; Williams, M. J.; Zacuto, M. J.; Doyle, A. G. Angew. Chem. Int. Ed. 2017, 56, 7191.
[102]
Cai, Y.; Tang, Y.; Fan, L.; Lefebvre, Q.; Hou, H.; Rueping, M. ACS Catal. 2018, 8, 9471.
[103]
Das, S.; Murugesan, K.; Villegas Rodríguez, G. J.; Kaur, J.; Barham, J. P.; Savateev, A.; Antonietti, M.; K?nig, B. ACS Catal. 2021, 11, 1593.
[104]
Deng, H.-P.; Fan, X.-Z.; Chen, Z.-H.; Xu, Q.-H.; Wu, J. J. Am. Chem. Soc. 2017, 139, 13579.
[105]
Go, S. Y.; Lee, G. S.; Hong, S. H. Org. Lett. 2018, 20, 4691.
[106]
Ackerman, L. K. G.; Martinez Alvarado, J. I.; Doyle, A. G. J. Am. Chem. Soc. 2018, 140, 14059.
[107]
Sun, Z.; Kumagai, N.; Shibasaki, M. Org. Lett. 2017, 19, 3727.
[108]
Lee, G. S.; Won, J.; Choi, S.; Baik, M.-H.; Hong, S. H. Angew. Chem. Int. Ed. 2020, 59, 16933.
[109]
Zhang, J.; Niu, Y.; Kong, F.; Yan, M. J. Catal. 2022, 416, 58.
[110]
Lee, G. S.; Park, B.; Hong, S. H. Nat. Commun. 2022, 13, 5200.
[111]
Xu, G.-Q.; Wang, W. D.; Xu, P.-F. J. Am. Chem. Soc. 2024, 146, 1209.
[112]
Cheng, X.; Lu, H.; Lu, Z. Nat. Commun. 2019, 10, 3549.
[113]
Zhang, W.; Shu, X.; Huan, L.; Cheng, B.; Huo, H. Org. Biomol. Chem. 2021, 19, 9407.
[114]
Cheng, X.; Li, T.; Liu, Y.; Lu, Z. ACS Catal. 2021, 11, 11059.
[115]
Xu, J.; Li, Z.; Xu, Y.; Shu, X.; Huo, H. ACS Catal. 2021, 11, 13567.
[116]
Shu, X.; Zhong, D.; Lin, Y.; Qin, X.; Huo, H. J. Am. Chem. Soc. 2022, 144, 8797.
[117]
Xu, S.; Ping, Y.; Li, W.; Guo, H.; Su, Y.; Li, Z.; Wang, M.; Kong, W. J. Am. Chem. Soc. 2023, 145, 5231.
[118]
Shu, X.; Huan, L.; Huang, Q.; Huo, H. J. Am. Chem. Soc. 2020, 142, 19058.
[119]
Huan, L.; Shu, X.; Zu, W.; Zhong, D.; Huo, H. Nat. Commun. 2021, 12, 3536.
[120]
Shu, X.; Zhong, D.; Huang, Q.; Huan, L.; Huo, H. Nat. Commun 2023, 14, 125.
[121]
Cuesta-Galisteo, S.; Sch?rgenhumer, J.; Hervieu, C. Nevado, C. Angew. Chem. Int. Ed. 2024, 63, e202313717.
[122]
Li, J.; Cheng, B.; Shu, X.; Xu, Z.; Li, C.; Huo, H. J. Am. Chem. Soc. 2024, 146, 19909.
[123]
Hu, X.; Cheng-Sánchez, I.; Kong, W.; Molander, G. A. Nevado, C., Nat. Catal. 2024, 7, 655.
文章导航

/