综述与进展

三聚苯环化反应的研究进展

  • 周岑 ,
  • 赵新 ,
  • 张霄
展开
  • a 闽江学院材料与化学工程学院 福州 350108
    b 中国科学院上海有机化学研究所 上海 200032
    c 福建师范大学化学与材料学院 福州 350117

收稿日期: 2024-07-31

  修回日期: 2024-08-24

  网络出版日期: 2024-09-02

基金资助

国家自然科学基金(22271047); 福建省自然科学基金(2022J011121)

Research Progress in Benzene-Forming Cyclotrimerization Reactions

  • Cen Zhou ,
  • Xin Zhao ,
  • Xiao Zhang
Expand
  • a College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108
    b Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    c College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350117

Received date: 2024-07-31

  Revised date: 2024-08-24

  Online published: 2024-09-02

Supported by

National Natural Science Foundation of China(22271047); Natural Science Foundation of Fujian Province(2022J011121)

摘要

三聚苯环化反应是通过同种官能团的连续转化形成苯环的一类反应, 在天然产物合成、高分子化学、超分子化学、材料科学等诸多领域被广泛应用. 按照官能团转化的种类, 对近年来通过特定官能团三聚转化形成苯环的反应进行了系统性总结归纳, 对每类反应的条件、机理、可能存在的副反应、主要应用实例等内容进行了介绍, 并对该领域未来的发展方向进行了展望.

本文引用格式

周岑 , 赵新 , 张霄 . 三聚苯环化反应的研究进展[J]. 有机化学, 2025 , 45(1) : 42 -55 . DOI: 10.6023/cjoc202407048

Abstract

Benzene-forming cyclotrimerization reactions are capable of constructing cyclic structures via continuous transformation of three identical functional groups, and have applications in various fields such as natural product synthesis, polymer chemistry, supramolecular chemistry, and material science. In this review, the recent advances in cyclotrimerization reactions forming a central benzene ring are systematically summarized according to the different reaction types of functional groups. In each typical example, the reaction conditions, mechanism, possible side reactions, and applications are discussed. A future perspective on benzene-forming cyclotrimerization reactions is also presented.

参考文献

[1]
Berthelot, M. Liebigs Ann. Chem. 1866, 139, 272.
[2]
Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T. Liebigs Ann. Chem. 1948, 560, 1.
[3]
Furlani Donda, A.; Cervone, E.; Biancifiori, M. A. Recl. Trav. Chim. Pays-Bas 1962, 81, 585.
[4]
Cheng, J.-S.; Jiang, H.-F.; Zhang, Q.-J.; Ouyang, X.-Y. Chin. J. Org. Chem. 2003, 23, 313 (in Chinese).
[4]
(程金生, 江焕峰, 张群健, 欧阳小月, 有机化学, 2003, 23, 313.)
[5]
Roglans, A.; Pla-Quintana, A.; Solà, M. Chem. Rev. 2021, 121, 1894.
[6]
Sugahara, T.; Guo, J.-D.; Sasamori, T.; Nagase, S.; Tokitoh, N. Angew. Chem., Int. Ed. 2018, 57, 3499.
[7]
Yamamoto, K.; Nagae, H.; Tsurugi, H.; Mashima, K. Dalton Trans., 2016, 45, 17072.
[8]
Hapke, M. Tetrahedron Lett. 2016, 57, 5719.
[9]
Yang, J. C.; Verkade, J. G. J. Am. Chem. Soc. 1998, 120, 6834.
[10]
Neumeier, M.; Chakraborty, U.; Schaarschmidt, D.; de la Pena O'Shea, V.; Perez-Ruiz, R.; Jacobi von Wangelin, A. Angew. Chem., nt. Ed. 2020, 59, 13473.
[11]
Ouchi, S.; Inoue, T.; Nogami, J.; Nagashima, Y.; Tanaka, K. Nat. Synth. 2023, 2, 535.
[12]
Liang, K.; Lu, L.; Liu, X.; Yang, D.; Wang, S.; Gao, Y.; Alhumade, H.; Yi, H.; Lei, A. ACS Catal. 2021, 11, 14892.
[13]
Arepally, S.; Nandhakumar, P.; González-Montiel, G. A.; Dzhaparova, A.; Kim, G.; Ma, A.; Nam, K. M.; Yang, H.; Cheong, P. H.-Y.; Park, J. K. ACS Catal. 2022, 12, 6874.
[14]
Ardizzoia, G. A.; Brenna, S.; Cenini, S.; La Monica, G.; Masciocchi, N.; Maspero, A. J. Mol. Catal. A: Chem. 2003, 204-205, 333.
[15]
Haley, R. A.; Zellner, A. R.; Krause, J. A.; Guan, H.; Mack, J. ACS Sustainable Chem. Eng. 2016, 4, 2464.
[16]
Hollingsworth, R. L.; Bheemaraju, A.; Lenca, N.; Lord, R. L.; Groysman, S. Dalton Trans. 2017, 46, 5605.
[17]
Xu, Y.; Pan, Y.; Wu, Q.; Wang, H.; Liu, P. J. Org. Chem. 2011, 76, 8472.
[18]
Huang, Y.-S.; Huang, G.-T.; Liu, Y.-L.; Yu, J.-S. K.; Tsai, Y.-C. Angew. Chem., nt. Ed. 2017, 56, 15427.
[19]
Doll, J. S.; Eichelmann, R.; Hertwig, L. E.; Bender, T.; Kohler, V. J.; Bill, E.; Wadepohl, H.; Roşca, D.-A. ACS Catal. 2021, 11, 5593.
[20]
Sen, A.; Sato, T.; Ohno, A.; Baek, H.; Muranaka, A.; Yamada, Y. M. A. JACS Au 2021, 1, 2080.
[21]
Fan, J.-T.; Fan, X.-H.; Gao, C.-Y.; Wei, J.; Yang, L.-M. Org. Chem. Front. 2022, 9, 2357.
[22]
Peña, D.; Escudero, S.; Pérez, D.; Guitián, E.; Castedo, L. Angew. Chem., nt. Ed. 1998, 37, 2659.
[23]
Pozo, I.; Guitián, E.; Pérez, D.; Peña, D. Acc. Chem. Res. 2019, 52, 2472.
[24]
Guo, C.; Xia, D.; Yang, Y.; Zuo, X. Chem. Rec. 2019, 19, 1.
[25]
Seyler, H.; Purushothaman, B.; Jones, D. J.; Holmes, A. B.; Wong, W. W. H. Pure Appl. Chem. 2012, 84, 1047.
[26]
Hayase, N.; Miyauchi, Y.; Aida, Y.; Sugiyama, H.; Uekusa, H.; Shibata, Y.; Tanaka, K. Org. Lett. 2017, 19, 2993.
[27]
Hayase, N.; Nogami, J.; Shibata, Y.; Tanaka, K. Angew. Chem.,Int. Ed. 2019, 58, 9439.
[28]
Nogami, J.; Nagashima, Y.; Tanaka, Y.; Sugiyama, H.; Uekusa, H.; Muranaka, A.; Uchiyama, M.; Tanaka, K. Angew. Chem.,Int. Ed. 2022, 61, e202200800.
[29]
Liu, J.; Zheng, R.; Tang, Y.; Haussler, M.; Lam, J. W. Y; Qin, A.; Ye, M.; Hong, Y.; Gao, P.; Tang, B. Z. Macromolecules 2007, 40, 7473.
[30]
Yuan, S.; Dorney, B.; White, D.; Kirklin, S.; Zapol, P.; Yu, L.; Liu, D.-J. Chem. Commun. 2010, 46, 4547.
[31]
Wang, Z.; Shi, Y.; Wang, J.; Li, L.; Wu, H.; Yao, B.; Sun, J. Z.; Qin, A.; Tang, B. Z. Polym. Chem. 2014, 5, 5890.
[32]
Liu, J.; Ruffieux, P.; Feng, X.; Mu?llen, K.; Fasel, R. Chem. Commun. 2014, 50, 11200.
[33]
Pla-Quintana, A.; Roglans, A. Molecules 2010, 15, 9230.
[34]
Domínguez, G.; Pérez-Castells, J. Chem. Soc. Rev. 2011, 40, 3430.
[35]
Morita, F.; Kishida, Y.; Sato, Y.; Sugiyama, H.; Abekura, M.; Noga- mi, J.; Toriumi, N.; Nagashima, Y.; Kinoshita, T.; Fukuhara, G.; Uchiyama, M., Uekusa, H.; Tanaka, K. Nat. Synth. 2024, 3, 774.
[36]
Amick, A. W.; Scott, L. T. J. Org. Chem. 2007, 72, 3412.
[37]
Kumar, R.; Chmielewski, P. J.; Lis, T.; Volkmer, D.; Stępień, M. Angew. Chem.,Int. Ed. 2022, 61, e202207486.
[38]
Reif, P.; Gupta, N. K.; Rose, M. Green Chem. 2023, 25, 1588.
[39]
Deng, K.; Huai, Q.-Y.; Shen, Z.-L.; Li, H.-J.; Liu, C.; Wu, Y.-C. Org. Lett. 2015, 17, 1473.
[40]
Adams, R.; Hufferd, R. W. Org. Synth. 1922, 2, 41.
[41]
Kotha, S.; Meshram, M.; Panguluri, N.R.; Shah, V.; Todeti, S.; Shirbhate, M. E. Chem. Asian J. 2019, 14, 1356.
[42]
Cao, X. Y.; Zhang, W. B.; Wang, J. L.; Zhou, X. H.; Lu, H.; Pei, J. J. Am. Chem. Soc. 2003, 125, 12430.
[43]
Dash, B. P.; Satapathy, R.; Maguire, J. A.; Hosmane, N. S. Org. Lett. 2008, 10, 2247.
[44]
Dash, B. P.; Satapathy, R.; Gaillard, E. R.; Maguire, J. A.; Hos- mane, N. S. J. Am. Chem. Soc. 2010, 132, 6578.
[45]
Goubard, F.; Dumur, F. RSC Adv. 2015, 5, 3521.
[46]
Górski, K.; Mech-Piskorz, J.; Pietraszkiewicz, M. New J. Chem. 2022, 46, 8939.
[47]
Elmorsy, S. S.; Pelter, A.; Hursthouse, M. B.; Ando, D. Tetrahedron Lett. 1992, 33, 821.
[48]
Ginnari-Satriani, L.; Casagrande, V.; Bianco, A.; Ortaggi, G. Org. Biomol. Chem. 2009, 7, 2513.
[49]
Scott, L. T.; Boorum, M. M.; McMahon, B. J.; Hagen, S.; Mack, J.; Blank, J.; Wegner, H.; de Meijere, A. Science 2002, 295, 1500.
[50]
Pascal, R. A., Jr.; Mathai, M. S.; Shen, X.; Ho, D. M. Angew. Chem., Int. Ed. 2001, 40, 4746.
[51]
Song, Q.; Ho, D. M.; Pascal, R. A.,Jr. J. Org. Chem. 2007, 72, 4449.
[52]
Alaimo, P. J.; Marshall, A.-L.; Andrews, D. M.; Langenhan, J. M. Org. Synth. 2010, 87, 192.
[53]
Sanguinet, L.; Williams, J. C.; Yang, Z.; Twieg, R. J.; Mao, G.; Singer, K. D.; Wiggers, G.; Petschek, R. G. Chem. Mater. 2006, 18, 4259.
[54]
Al-Zaydi, K. M.; Nhari, L. M.; Borik, R. M.; Elnagdi, M. H. Green Chem. Lett. Rev. 2010, 3, 93.
[55]
Beryozkina, T. V.; Zhidovinov, S. S.; Shafran, Y. M.; Eltsov, O. S.; Slepukhin, P. A.; Leban, J.; Marquez, J.; Bakulev, V. A. Tetrahedron 2014, 70, 3915.
[56]
Tuo, D.-H.; He, Q.; Wang, Q.-Q.; Ao, Y.-F.; Wang, D.-X. Chin. J. Chem. 2019, 37, 684.
[57]
Kim, T. Y.; Kim, H. S.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 1999, 20, 1255.
[58]
Kim, T. Y.; Kim, H. S.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2000, 21, 521.
[59]
Saha, A.; Wu, C. M.; Peng, R.; Koodali, R.; Banerjee, S. Eur. J. Org. Chem. 2019, 104.
[60]
Midya, S. P.; Mondal, S.; Islam, A. S. M.; Rashid, A.; Mondal, S.; Paul, A.; Ghosh, P. Org. Lett. 2022, 24, 4438.
[61]
Yang, B.; Bjo?rk, J.; Lin, H.; Zhang, X.; Zhang, H.; Li, Y.; Fan, J.; Li, Q.; Chi, L. J. Am. Chem. Soc. 2015, 137, 4904.
[62]
Wang, C.; Li, C.; Rutledge, E.; Che, S.; Lee, J.; Kalin, A.; Zhang, C.; Zhou, H.-C.; Guo, Z.-H.; Fang, L. J. Mater. Chem. A 2020, 8, 15891.
[63]
Che, S.; Li, C; Wang, C; Zaheer, W.; Ji, X.; Phillips, B.; Gurbandurdyyev, G.; Glynn, J; Guo, Z.-H.; Al-Hashimi, M.; Zhou, H.-C.; Banerjee, S.; Fang, L. Chem. Sci. 2021, 12, 8438.
[64]
Sprick, R. S.; Thomas, A.; Scherf, U. Polym. Chem. 2010, 1, 283.
[65]
Zhang, Q.; Sun, Y.; Li, H.; Tang, K.; Zhong, Y.-W.; Wang, D.; Guo, Y.; Liu, Y. Research 2021, 9790705.
[66]
Zhou, C.; Xuan, W.; Luo, S.-P.; Bao, Y.-H. J. Chem. Res. 2018, 42, 556.
[67]
Gassman, P. G.; Gennick, I. J. Am. Chem. Soc. 1980, 102, 6863.
[68]
Durr, R.; Cossu, S.; Lucchini, V.; De Lucchi, O. Angew. Chem., Int. Ed. 1997, 36, 2805.
[69]
Fabris, F.; De Martin, A.; De Lucchi, O. Tetrahedron Lett. 1999, 40, 9121.
[70]
Zonta, C.; Cossu, S.; Peluso, P.; De Lucchi, O. Tetrahedron Lett. 1999, 40, 8185.
[71]
Cossu, S.; Cimenti, C.; Peluso, P.; Paulon, A.; De Lucchi, O. Angew. Chem., Int. Ed. 2001, 40, 4086.
[72]
Fabris, F.; Bellotto, L.; De Lucchi, O. Tetrahedron Lett. 2003, 44, 1211.
[73]
Yan, Z.; McCracken, T.; Xia, S.; Maslak, V.; Gallucci, J.; Hadad, C.; M. Badjić, J. D. J. Org. Chem. 2008, 73, 355.
[74]
Wang, M.; Lin, Z. Organometallics 2010, 29, 3077.
[75]
Gunther, M. J.; Pavlović, R. Z.; Fernandez, J. P.; Lei, Z.; Gallucci, J.; Hadad, C. M.; Badjić, J. D. J. Org. Chem. 2019, 84, 4392.
[76]
Zonta, C.; Cossu, S.; De Lucchi, O. Eur. J. Org. Chem. 2000, 1965.
[77]
Zonta, C.; Fabris, F.; De Lucchi, O. Org. Lett. 2005, 7, 1003.
[78]
Erdoğan, M.; Eşsiz, S.; Fabris, F.; Daştan, A. ARKIVOC 2018, iii, 134.
[79]
Maslak, V.; Yan, Z.; Xia, S.; Gallucci, J.; Hadad, C. M.; Badjć, J. D. J. Am. Chem. Soc. 2006, 128, 5887.
[80]
Sakurai, H.; Daiko, T.; Hirao, T. Science 2003, 301, 1878.
[81]
Cossu, S.; De Lucchi, O.; Paulon, A.; Peluso, P.; Zonta, C. Tetrahedron Lett. 2001, 42, 3515.
[82]
Cossu, S.; De Lucchi, O.; Paulon, A.; Peluso, P.; Zonta, C. Tetrahedron 2001, 57, 8719.
[83]
Higashibayashi, S.; Sakurai, H. Chem. Lett. 2007, 36, 18.
[84]
Yamanaka, M.; Morishima, M.; Shibata, Y.; Higashibayashi, S.; Sakurai, H. Organometallics 2014, 33, 3060.
[85]
Lei, Z.; Gunther, M. J.; Liyana Gunawardana, V. W.; Pavlović, R. Z.; Xie H.; Zhu, X.; Keenan, M.; Riggs, A.; Badjić, J. D. Chem. Commun. 2020, 56, 10243.
[86]
Higashibayashi, S.; Sakurai, H. J. Am. Chem. Soc. 2008, 130, 8592.
[87]
Tan, O.; Higashibayashi, S.; Karanjit, S.; Hidehiro Sakurai, H. Nat. Commun. 2012, 3, 891.
[88]
Paulon, A.; Cossu, S.; De Lucchi, O.; Zonta, C. Chem. Commun. 2000, 1837.
[89]
Hermann, K.; Sardini, S.; Ruan, Y.; Yoder, R. J.; Chakraborty, M.; Vyas, S.; Hadad, C. M.; Badjić, J. D. J. Org. Chem. 2013, 78, 2984.
[90]
Yamamoto, T.; Hayashi, Y.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1978, 51, 2091.
[91]
Zhou, Z.; Yamamoto, T. J. Organomet. Chem. 1991, 414, 119.
[92]
Patra, A.; Wijsboom, Y. H.; Shimon, L. J. W.; Bendikov, M. Angew. Chem., Int. Ed. 2007, 46, 8814.
[93]
Chen, Q.; Thompson, A. L.; Christensen, K. E.; Horton, P. N.; Coles, S. J.; Anderson, H. L. J. Am. Chem. Soc. 2023, 145, 11859.
[94]
Schroeder, Z. W.; LeDrew, J.; Selmani, V. M.; Maly, K. E. RSC Adv. 2021, 11, 39564.
[95]
Ru?diger, E. C.; Porz, M.; Schaffroth, M.; Rominger, F.; Bunz, U. H. F. Chem.-Eur. J. 2014, 20, 12725.
[96]
Liu, P.; Chen, X.-Y.; Cao, J.; Ruppenthal, L.; Gottfried, J. M.; Müllen, K.; Wang, X.-Y. J. Am. Chem. Soc. 2021, 143, 5314.
[97]
Li, Z.-M.; Shuai, B.; Ma, C.; Fang, P.; Mei, T.-S. Chin. J. Chem. 2022, 40, 2335.
[98]
Pérez, D.; Guitián, E. Chem. Soc. Rev. 2004, 33, 274.
[99]
Voisin, E.; Williams, V. E. Macromolecules 2008, 41, 2994.
[100]
Boden, N.; Borner, R. C.; Bushby, R. J.; Cammidge, A. N.; Jesudason, M. V. Liq. Cryst. 1993, 15, 851.
[101]
Kumar, S.; Varshney, S. K. Synthesis 2001, 305.
[102]
Kumar, S.; Manickam, M. Chem. Commun. 1997, 1615.
[103]
Cho, H. Y.; Scott, L. T. Tetrahedron Lett. 2015, 56, 3458.
[104]
Regenbrecht, C.; Waldvogel, S. R. Beilstein J. Org. Chem. 2012, 8, 1721.
[105]
Nakamura, Y.; Sato, Y.; Shida, N.; Atobe, M. Electrochemistry 2021, 89, 395.
[106]
Li, X.-C.; Wang, C.-Y.; Lai, W.-Y.; Huang, W. J. Mater. Chem. C 2016, 4, 10574.
[107]
Kaneko, T.; Matsuo, M. Heterocycles 1979, 12, 471.
[108]
Mackintosh, J. G.; Mount, A. R. J. Chem. Soc., Faraday Trans. 1994, 90, 1121.
[109]
Mackintosh, J. G.; Redpath, C. R.; Jones, A. C.; Langridge-Smith, P. R. R.; Mount, A. R. J. Electroanal. Chem. 1995, 388, 179.
[110]
Manini, P.; d’Ischia, M.; Milosa, M.; Prota, G. J. Org. Chem. 1998, 63, 7002.
[111]
Greci, L.; Tommasi, G.; Petrucci, R.; Marrosu, G.; Trazza, A.; Sgarabotto, P.; Righi, R.; Alberti, A. J. Chem. Soc., Perkin Trans. 2000, 11, 2337.
[112]
Robertson, N.; Parsons, S.; MacLean, E. J.; Coxall, R. A.; Mount, A. R. J. Mater. Chem. 2000, 10, 2043.
[113]
Toworakajohnkun, N.; Sukwattanasinitt, M.; Rashatasakhon, P. Tetrahedron Lett. 2017, 58, 4149.
[114]
Deng, T.; Yan, W.; Liu, X.; Hu, G.; Xiao, W.; Mao, S.; Lin, J.; Jiao, Y.; Jin, Y. Org. Lett. 2022, 24, 1502.
[115]
Nishida, K.; Ono, K.; Kato, S.; Kitamura, C. Tetrahedron Lett. 2020, 61, 152422.
[116]
Yang, J.-S.; Lee, Y.-R.; Yan, J.-L.; Lu, M.-C. Org. Lett. 2006, 8, 5813.
[117]
Jiang, H.-F.; Shen, Y.-X.; Wang, Z.-Y. Tetrahedron Lett. 2007, 48, 7542.
[118]
Tamaso, K.; Hatamoto, Y.; Sakaguchi, S.; Obora, Y.; Ishii, Y. J. Org. Chem. 2007, 72, 3603.
[119]
Piglosiewicz, I. M.; Beckhaus, R.; Saak, W.; Haase, D. J. Am. Chem. Soc. 2005, 127, 14190.
文章导航

/