研究论文

SBA-15负载的N-杂环卡宾-吡啶钼配合物在二氧化碳转化制备环状碳酸酯中的应用

  • 李建文 ,
  • 王涛 ,
  • 陶晟 ,
  • 陈飞 ,
  • 李敏 ,
  • 刘宁
展开
  • 石河子大学化学化工学院 化工绿色过程兵团重点实验室 新疆石河子 832003

收稿日期: 2024-05-27

  修回日期: 2024-07-31

  网络出版日期: 2024-09-02

基金资助

国家自然科学基金(22168034); 新疆自治区天池英才计划; 石河子大学高层次人才科研启动资金(2022ZK001); 第七师胡杨河市科技计划(QS2024013)

N-Heterocyclic Carbene-Pyridine Molybdenum Complex Supported over SBA-15 for Converting of Carbon Dioxide into Cyclic Carbonates

  • Jianwen Li ,
  • Tao Wang ,
  • Sheng Tao ,
  • Fei Chen ,
  • Min Li ,
  • Ning Liu
Expand
  • State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003

Received date: 2024-05-27

  Revised date: 2024-07-31

  Online published: 2024-09-02

Supported by

National Natural Science Foundation of China(22168034); Tianchi Talent Project of Xinjiang Uygur; Start-Up Foundation for High-Level Professionals of Shihezi University(2022ZK001); Science and Technology Project of 7th Division Huyanghe City(QS2024013)

摘要

由二氧化碳(CO2)和环氧化物合成环状碳酸酯是CO2利用的有效途径. 尽管各类金属催化剂相继见诸报道, 但依然急需开发一类可回收或再循环的催化剂. 该工作将SBA-15负载的N-杂环卡宾-吡啶钼络合物(Mo@SBA-15)作为一类高效和可循环利用的催化剂应用于CO2和环氧化物合成环状碳酸酯. Mo@SBA-15与四丁基溴化铵(TBAB)组成的双组分催化体系在100 ℃和CO2 (1 MPa)压力下合成环状碳酸酯时, 显示出了较高的催化活性. 此外, Mo@SBA-15重复使用7次未发现明显的活性降低.

本文引用格式

李建文 , 王涛 , 陶晟 , 陈飞 , 李敏 , 刘宁 . SBA-15负载的N-杂环卡宾-吡啶钼配合物在二氧化碳转化制备环状碳酸酯中的应用[J]. 有机化学, 2024 , 44(10) : 3213 -3222 . DOI: 10.6023/cjoc202405037

Abstract

Synthesis of cyclic carbonates from carbon dioxide (CO2) and epoxides is an effective pathway for the CO2 utilization. Although various metal catalysts have been reported, it is highly desirable to develop a method for the reuse or recycling of catalysts. Herein, an N-heterocyclic carbene-pyridine molybdenum complex supported over SBA-15 (Mo@SBA- 15) was used as an efficient and recyclable catalyst for converting CO2 and epoxides into cyclic carbonates. Mo@SBA-15 in combination with tetra-butylammonium bromide (TBAB) shows high catalytic activity in the synthesis of cyclic carbonates under 100 ℃ and 1 MPa CO2 pressure. In addition, Mo@SBA-15 was reused seven times without any significant activity loss.

参考文献

[1]
Jahandar Lashaki, M.; Khiavi, S.; Sayari, A. Chem. Soc. Rev. 2019, 48, 3320.
[2]
de Kleijne, K.; Hanssen, S. V.; van Dinteren, L.; Huijbregts, M. A. J.; van Zelm, R.; de Coninck, H. One Earth 2022, 5, 168.
[3]
Artz, J.; Muller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434.
[4]
Zhang, J.; Wang, L.; Liu, S.; Li, Z. Angew. Chem., Int. Ed. 2022, 61, e202116982.
[5]
Meylan, F. D.; Moreau, V.; Erkman, S. J. CO2 Util. 2015, 12, 101.
[6]
Buttner, H.; Longwitz, L.; Steinbauer, J.; Wulf, C.; Werner, T. Top. Curr. Chem. 2017, 375, 50.
[7]
Schaffner, B.; Schaffner, F.; Verevkin, S. P.; Borner, A. Chem. Rev. 2010, 110, 4554.
[8]
Taherimehr, M.; Serta, J. P.; Kleij, A. W.; Whiteoak, C. J.; Pescarmona, P. P. ChemSusChem 2015, 8, 1034.
[9]
Guo, L.; Lamb, K. J.; North, M. Green Chem. 2021, 23, 77.
[10]
Kotanen, S.; Wirtanen, T.; Mahlberg, R.; Anghelescu-Hakala, A.; Harjunalanen, T.; Willberg-Keyrilainen, P.; Laaksonen, T.; Sarlin, E. J. Appl. Polym. Sci. 2023, 140, e53964.
[11]
Zhang, X.; Zhao, B.; Fu, S.; Seruya, R. S.; Madey III, J. F.; Bukhryakova, E.; Zhang, F. Macromolecules 2024, 57, 2858.
[12]
Giri, P.; Barath V, S.; Dhurua, S.; Maity, S.; Gazi, R.; Jana, M. Phys. Chem. Chem. Phys. 2024, 26, 9317.
[13]
Rehman, A.; Saleem, F.; Javed, F.; Ikhlaq, A.; Ahmad, S. W.; Harvey, A. J. Environ. Chem. Eng. 2021, 9, 105113.
[14]
Qin, Y.; Guo, H.; Sheng, X.; Wang, X.; Wang, F. Green Chem. 2015, 17, 2853.
[15]
Jiang, X.; Gou, F.; Fu, X.; Jing, H. J. CO2 Util. 2016, 16, 264.
[16]
Maeda, C.; Taniguchi, T.; Ogawa, K.; Ema, T. Angew. Chem., Int. Ed. 2015, 54, 134.
[17]
Chaugule, A. A.; Tamboli, A. H.; Kim, H. Fuel 2017, 200, 316.
[18]
Wang, B.; Cao, X.; Wang, L.; Meng, X.; Wang, Y.; Sun, W. Inorg. Chem. 2024, 63, 9156.
[19]
Xiao, L.-F.; Li, F.-W.; Xia, C.-G. Appl. Catal., A 2005, 279, 125.
[20]
Vysko?ilová, E.; ?afa?ík, D.; Zítová, K.; Vrbková, E.; Dimitrov, R.; Vagenknechtová, A.; ?erveny, L. Catal. Lett. 2022, 152, 3576.
[21]
Pappuru, S.; Shpasser, D.; Carmieli, R.; Shekhter, P.; Jentoft, F. C.; Gazit, O. M. ACS Omega 2022, 7, 24656.
[22]
Mik?ovsky, P.; Rauchenwald, K.; Naghdi, S.; Rabl, H.; Eder, D.; Konegger, T.; Bica-Schr?der, K. ACS Sustainable Chem. Eng. 2024, 12, 1455.
[23]
Campisciano, V.; Gruttadauria, M.; Giacalone, F. ChemCatChem 2018, 11, 90.
[24]
Jayakumar, S.; Li, H.; Chen, J.; Yang, Q. ACS Appl. Mater. Interfaces 2018, 10, 2546.
[25]
Liu, L.-H.; Liu, L.; Chi, H.-R.; Li, C.-N.; Han, Z.-B. Chem. Commun. 2022, 58, 6417.
[26]
Helal, A.; Zahir, M. H.; Albadrani, A.; Ekhwan, M. M. Catal. Lett. 2023, 153, 2883.
[27]
Helal, A.; Alahmari, F.; Usman, M.; Yamani, Z. H. J. Environ. Chem. Eng. 2022, 10, 108061.
[28]
Qiu, L.-Q.; Li, H.-R.; He, L.-N. Acc. Chem. Res. 2023, 56, 2225.
[29]
Wang, K.; Li, H.; Yang, L.; Luo, Y.-Z.; Yao, Z.-J. Surf. Interfaces 2024, 45, 103845.
[30]
Li, J.; Han, Y.; Lin, H.; Wu, N.; Li, Q.; Jiang, J.; Zhu, J. ACS Appl. Mater. Interfaces 2020, 12, 609.
[31]
Xu, L.; Wang, Y.; Sun, Z.; Chen, Z.; Zhao, G.; Kühn, F. E.; Jia, W.-G.; Yun, R.; Zhong, R. Inorg. Chem. 2024, 63, 1828.
[32]
Pourhassan, F.; Khalifeh, R.; Eshghi, H. Fuel 2021, 287, 119567.
[33]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
[34]
Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature 1998, 396, 152.
[35]
Dokhaee, Z.; Ghiaci, M.; Farrokhpour, H.; Buntkowsky, G.; Breitzke, H. Ind. Eng. Chem. Res. 2020, 59, 12632.
[36]
Liu, Y.; Hu, Y. H.; Zhang, J. R.; Zhou, J. S.; Zhang, Z. K.; Wang, L.; Zhang, J.-L. Microporous Mesoporous Mater. 2022, 337, 111873.
[37]
Pickens, R. N.; Neyhouse, B. J.; Reed, D. T.; Ashton, S. T.; White, J. K. Inorg. Chem. 2018, 57, 11616.
[38]
Shi, Z.; Su, Q.; Ying, T.; Tan, X.; Deng, L.; Dong, L.; Cheng, W. J. CO2 Util. 2020, 39, 101162.
[39]
Sankar, M.; Ajithkumar, T. G.; Sankar, G.; Manikandan, P. Catal. Commun. 2015, 59, 201.
[40]
Yuan, C.; Huang, Z.; Chen, J. Catal. Commun. 2012, 24, 56.
[41]
Cang, R.; Lu, B.; Li, X.; Niu, R.; Zhao, J.; Cai, Q. Chem. Eng. Sci. 2015, 137, 268.
[42]
Mohammadi Ziarani, G.; Ebrahimi, Z.; Mohajer, F.; Badiei, A. Res. Chem. Intermed. 2021, 47, 4583.
[43]
Wang, D.; Guo, X.-Q.; Wang, C.-X.; Wang, Y.-N.; Zhong, R.; Zhu, X.-H.; Cai, L.-H.; Gao, Z.-W.; Hou, X.-F. Adv. Synth. Catal. 2013, 355, 1117.
[44]
Zhou, L.; Peng, L.; Ji, J.; Ma, W.; Hu, J.; Wu, Y.; Geng, J.; Hu, X. J. CO2 Util. 2022, 58, 101910.
[45]
Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Catal. Today 1998, 41, 207.
[46]
Roshan, K. R.; Kathalikkattil, A. C.; Tharun, J.; Kim, D. W.; Won, Y. S.; Park, D. W. Dalton Trans. 2014, 43, 2023.
[47]
Kathalikkattil, A. C.; Kim, D.-W.; Tharun, J.; Soek, H.-G.; Roshan, R.; Park, D.-W. Green Chem. 2014, 16, 1607.
[48]
Xie, Y.; Zhang, Z.; Jiang, T.; He, J.; Han, B.; Wu, T.; Ding, K. Angew. Chem., Int. Ed. 2007, 46, 7255.
[49]
Chen, F.; Tao, S.; Liu, N.; Dai, B. Polyhedron 2021, 196, 114990.
[50]
Li, C.; Xiong, W.; Zhao, T.; Liu, F.; Cai, H.; Chen, P.; Hu, X. Appl. Catal., B 2023, 324, 122217.
[51]
Ratzenhofer, M.; Kisch, H. Angew. Chem., Int. Edit. 1980, 19, 317.
[52]
Tenhumberg, N.; Büttner, H.; Sch?ffner, B.; Kruse, D.; Blumenstein, M.; Werner, T. Green Chem. 2016, 18, 3775.
[53]
Chen, J.-H.; Deng, C.-H.; Fang, S.; Ma, J.-G.; Cheng, P. Green Chem. 2018, 20, 989.
[54]
Kim, Y.; Ryu, S.; Cho, W.; Kim, M.; Park, M. H.; Kim, Y. Inorg. Chem. 2019, 58, 5922.
[55]
Li, J. W.; Tao, S.; Chen, F.; Li, M.; Liu, N. J. CO2 Util. 2023, 69, 102384.
[56]
Yu, W.-D.; Zhang, Y.; Han, Y.-Y.; Li, B.; Shao, S.; Zhang, L.-P.; Xie, H.-K.; Yan, J. Inorg. Chem. 2021, 60, 3980.
[57]
Shi, Z.; Niu, G.; Han, Q.; Shi, X.; Li, M. Mol. Catal. 2018, 461, 10.
[58]
Cheng, W.; Chen, X.; Sun, J.; Wang, J.; Zhang, S. Catal. Today 2013, 200, 117.
[59]
Rios Yepes, Y.; Quintero, C.; Osorio Meléndez, D.; Daniliuc, C. G.; Martínez, J.; Rojas, R. S. Organometallics 2019, 38, 469.
[60]
Desens, W.; Werner, T. Adv. Synth. Catal. 2016, 358, 622.
[61]
Liu, J.; Yang, G.; Liu, Y.; Zhang, D.; Hu, X.; Zhang, Z. Green Chem. 2020, 22, 4509.
[62]
Motokucho, S.; Morikawa, H. Chem. Commun. 2020, 56, 10678.
[63]
Li, Y.-D.; Cui, D.-X.; Zhu, J.-C.; Huang, P.; Tian, Z.; Jia, Y.-Y.; Wang, P.-A. Green Chem. 2019, 21, 5231.
[64]
Sope?a, S.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. ACS Catal. 2017, 7, 3532.
文章导航

/