有机化学 ›› 2024, Vol. 44 ›› Issue (10): 3213-3222.DOI: 10.6023/cjoc202405037 上一篇 下一篇
研究论文
收稿日期:
2024-05-27
修回日期:
2024-07-31
发布日期:
2024-08-30
基金资助:
Jianwen Li, Tao Wang, Sheng Tao, Fei Chen, Min Li*(), Ning Liu*()
Received:
2024-05-27
Revised:
2024-07-31
Published:
2024-08-30
Contact:
*E-mail: Supported by:
文章分享
由二氧化碳(CO2)和环氧化物合成环状碳酸酯是CO2利用的有效途径. 尽管各类金属催化剂相继见诸报道, 但依然急需开发一类可回收或再循环的催化剂. 该工作将SBA-15负载的N-杂环卡宾-吡啶钼络合物(Mo@SBA-15)作为一类高效和可循环利用的催化剂应用于CO2和环氧化物合成环状碳酸酯. Mo@SBA-15与四丁基溴化铵(TBAB)组成的双组分催化体系在100 ℃和CO2 (1 MPa)压力下合成环状碳酸酯时, 显示出了较高的催化活性. 此外, Mo@SBA-15重复使用7次未发现明显的活性降低.
李建文, 王涛, 陶晟, 陈飞, 李敏, 刘宁. SBA-15负载的N-杂环卡宾-吡啶钼配合物在二氧化碳转化制备环状碳酸酯中的应用[J]. 有机化学, 2024, 44(10): 3213-3222.
Jianwen Li, Tao Wang, Sheng Tao, Fei Chen, Min Li, Ning Liu. N-Heterocyclic Carbene-Pyridine Molybdenum Complex Supported over SBA-15 for Converting of Carbon Dioxide into Cyclic Carbonates[J]. Chinese Journal of Organic Chemistry, 2024, 44(10): 3213-3222.
Entry | Catalyst (mg) | Cocatalyst (mol%) | T/℃ | p/MPa | Time/h | Yield/% |
---|---|---|---|---|---|---|
1 | None | None | 100 | 1 | 6 | 0 |
2 | Mo@SBA-15 (50) | TBAB (3) | 100 | 1 | 6 | 97 |
3 | None | TBAB (3) | 100 | 1 | 6 | 62 |
4 | Mo@SBA-15 (50) | None | 100 | 1 | 6 | 0 |
5 | Mo complex 1a (50) | TBAB (3) | 100 | 1 | 6 | 94 |
6 | (3-Chloropropyl) trimethoxysilane (50) | TBAB (3) | 100 | 1 | 6 | 46 |
7 | SBA-15 (50) | TBAB (3) | 100 | 1 | 6 | 71 |
8 | Mo@SBA-15 (50) | TBAB (3) | 30 | 1 | 6 | 27 |
9 | Mo@SBA-15 (50) | TBAB (3) | 60 | 1 | 6 | 52 |
10 | Mo@SBA-15 (50) | TBAB (3) | 80 | 1 | 6 | 73 |
11 | Mo@SBA-15 (50) | TBAB (3) | 100 | 0.5 | 6 | 70 |
12 | Mo@SBA-15 (50) | TBAB (3) | 100 | 1.5 | 6 | 88 |
13 | Mo@SBA-15 (20) | TBAB (3) | 100 | 1 | 6 | 87 |
14 | Mo@SBA-15 (30) | TBAB (3) | 100 | 1 | 6 | 94 |
15 | Mo@SBA-15 (40) | TBAB (3) | 100 | 1 | 6 | 96 |
16 | Mo@SBA-15 (30) | TBAB (1) | 100 | 1 | 6 | 49 |
17 | Mo@SBA-15 (30) | TBAB (2) | 100 | 1 | 6 | 82 |
18 | Mo@SBA-15 (30) | TBAB (3) | 100 | 1 | 2 | 71 |
19 | Mo@SBA-15 (30) | TBAB (3) | 100 | 1 | 4 | 82 |
20 | Mo@SBA-15 (30) | TBAB (3) | 100 | 1 | 10 | 97 |
Entry | Catalyst (mg) | Cocatalyst (mol%) | T/℃ | p/MPa | Time/h | Yield/% |
---|---|---|---|---|---|---|
1 | None | None | 100 | 1 | 6 | 0 |
2 | Mo@SBA-15 (50) | TBAB (3) | 100 | 1 | 6 | 97 |
3 | None | TBAB (3) | 100 | 1 | 6 | 62 |
4 | Mo@SBA-15 (50) | None | 100 | 1 | 6 | 0 |
5 | Mo complex 1a (50) | TBAB (3) | 100 | 1 | 6 | 94 |
6 | (3-Chloropropyl) trimethoxysilane (50) | TBAB (3) | 100 | 1 | 6 | 46 |
7 | SBA-15 (50) | TBAB (3) | 100 | 1 | 6 | 71 |
8 | Mo@SBA-15 (50) | TBAB (3) | 30 | 1 | 6 | 27 |
9 | Mo@SBA-15 (50) | TBAB (3) | 60 | 1 | 6 | 52 |
10 | Mo@SBA-15 (50) | TBAB (3) | 80 | 1 | 6 | 73 |
11 | Mo@SBA-15 (50) | TBAB (3) | 100 | 0.5 | 6 | 70 |
12 | Mo@SBA-15 (50) | TBAB (3) | 100 | 1.5 | 6 | 88 |
13 | Mo@SBA-15 (20) | TBAB (3) | 100 | 1 | 6 | 87 |
14 | Mo@SBA-15 (30) | TBAB (3) | 100 | 1 | 6 | 94 |
15 | Mo@SBA-15 (40) | TBAB (3) | 100 | 1 | 6 | 96 |
16 | Mo@SBA-15 (30) | TBAB (1) | 100 | 1 | 6 | 49 |
17 | Mo@SBA-15 (30) | TBAB (2) | 100 | 1 | 6 | 82 |
18 | Mo@SBA-15 (30) | TBAB (3) | 100 | 1 | 2 | 71 |
19 | Mo@SBA-15 (30) | TBAB (3) | 100 | 1 | 4 | 82 |
20 | Mo@SBA-15 (30) | TBAB (3) | 100 | 1 | 10 | 97 |
Entry | Cat. | Nucleophile (mol%) | Epoxide | T/℃ | Time/h | p/MPa | Yield/% | Runs |
---|---|---|---|---|---|---|---|---|
1[ | MoCl5 (0.5 mol%) | PPh3 (3) | PO | r.t. | 168 | 0.1 | 79.0 | 0 |
2[ | MoO3 (2 mol%) | [Bu4P]Br (2) | EMO | 100 | 16 | 5 | 98.0 | 0 |
3[ | Mo catal. (1 mol%) | TBAB (7.2) | PO | 25 | 24 | 0.1 | 97.5 | 0 |
4[ | Mo catal. (0.1 mol%) | Neat | ECH | 100 | 3.5 | 1 | 56.3 | 0 |
5[ | Mo catal. (0.5 mol%) | TBAI (2) | EB | 30 | 24 | 0.5 | 94.0 | 0 |
6[ | Mo catal. (0.15 mol%) | TBAB (5) | ECH | 70 | 3 | 0.1 | 99.9b | 5 |
7[ | Mo catal. (0.1 mmol) | TBAB (1) | SO | 50 | 48 | 0.5 | 99.0b | 3 |
8[ | Mo catal. (0.5 mol%) | TBAI (2) | EB | 80 | 20 | 0.5 | 91.0 | 0 |
9 (our work) | Mo@SBA-15 (30 mg) | TBAB (3) | EB | 100 | 6 | 1 | 94.0b | 7 |
Entry | Cat. | Nucleophile (mol%) | Epoxide | T/℃ | Time/h | p/MPa | Yield/% | Runs |
---|---|---|---|---|---|---|---|---|
1[ | MoCl5 (0.5 mol%) | PPh3 (3) | PO | r.t. | 168 | 0.1 | 79.0 | 0 |
2[ | MoO3 (2 mol%) | [Bu4P]Br (2) | EMO | 100 | 16 | 5 | 98.0 | 0 |
3[ | Mo catal. (1 mol%) | TBAB (7.2) | PO | 25 | 24 | 0.1 | 97.5 | 0 |
4[ | Mo catal. (0.1 mol%) | Neat | ECH | 100 | 3.5 | 1 | 56.3 | 0 |
5[ | Mo catal. (0.5 mol%) | TBAI (2) | EB | 30 | 24 | 0.5 | 94.0 | 0 |
6[ | Mo catal. (0.15 mol%) | TBAB (5) | ECH | 70 | 3 | 0.1 | 99.9b | 5 |
7[ | Mo catal. (0.1 mmol) | TBAB (1) | SO | 50 | 48 | 0.5 | 99.0b | 3 |
8[ | Mo catal. (0.5 mol%) | TBAI (2) | EB | 80 | 20 | 0.5 | 91.0 | 0 |
9 (our work) | Mo@SBA-15 (30 mg) | TBAB (3) | EB | 100 | 6 | 1 | 94.0b | 7 |
[1] |
Jahandar Lashaki, M.; Khiavi, S.; Sayari, A. Chem. Soc. Rev. 2019, 48, 3320.
doi: 10.1039/c8cs00877a pmid: 31149678 |
[2] |
de Kleijne, K.; Hanssen, S. V.; van Dinteren, L.; Huijbregts, M. A. J.; van Zelm, R.; de Coninck, H. One Earth 2022, 5, 168.
|
[3] |
Artz, J.; Muller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434.
|
[4] |
Zhang, J.; Wang, L.; Liu, S.; Li, Z. Angew. Chem., Int. Ed. 2022, 61, e202116982.
|
[5] |
Meylan, F. D.; Moreau, V.; Erkman, S. J. CO2 Util. 2015, 12, 101.
|
[6] |
Buttner, H.; Longwitz, L.; Steinbauer, J.; Wulf, C.; Werner, T. Top. Curr. Chem. 2017, 375, 50.
|
[7] |
Schaffner, B.; Schaffner, F.; Verevkin, S. P.; Borner, A. Chem. Rev. 2010, 110, 4554.
|
[8] |
Taherimehr, M.; Serta, J. P.; Kleij, A. W.; Whiteoak, C. J.; Pescarmona, P. P. ChemSusChem 2015, 8, 1034.
doi: 10.1002/cssc.201403323 pmid: 25688870 |
[9] |
Guo, L.; Lamb, K. J.; North, M. Green Chem. 2021, 23, 77.
|
[10] |
Kotanen, S.; Wirtanen, T.; Mahlberg, R.; Anghelescu-Hakala, A.; Harjunalanen, T.; Willberg-Keyrilainen, P.; Laaksonen, T.; Sarlin, E. J. Appl. Polym. Sci. 2023, 140, e53964.
|
[11] |
Zhang, X.; Zhao, B.; Fu, S.; Seruya, R. S.; Madey III, J. F.; Bukhryakova, E.; Zhang, F. Macromolecules 2024, 57, 2858.
|
[12] |
Giri, P.; Barath V, S.; Dhurua, S.; Maity, S.; Gazi, R.; Jana, M. Phys. Chem. Chem. Phys. 2024, 26, 9317.
|
[13] |
Rehman, A.; Saleem, F.; Javed, F.; Ikhlaq, A.; Ahmad, S. W.; Harvey, A. J. Environ. Chem. Eng. 2021, 9, 105113.
|
[14] |
Qin, Y.; Guo, H.; Sheng, X.; Wang, X.; Wang, F. Green Chem. 2015, 17, 2853.
|
[15] |
Jiang, X.; Gou, F.; Fu, X.; Jing, H. J. CO2 Util. 2016, 16, 264.
|
[16] |
Maeda, C.; Taniguchi, T.; Ogawa, K.; Ema, T. Angew. Chem., Int. Ed. 2015, 54, 134.
|
[17] |
Chaugule, A. A.; Tamboli, A. H.; Kim, H. Fuel 2017, 200, 316.
|
[18] |
Wang, B.; Cao, X.; Wang, L.; Meng, X.; Wang, Y.; Sun, W. Inorg. Chem. 2024, 63, 9156.
|
[19] |
Xiao, L.-F.; Li, F.-W.; Xia, C.-G. Appl. Catal., A 2005, 279, 125.
|
[20] |
Vyskočilová, E.; Šafařík, D.; Zítová, K.; Vrbková, E.; Dimitrov, R.; Vagenknechtová, A.; Červený, L. Catal. Lett. 2022, 152, 3576.
|
[21] |
Pappuru, S.; Shpasser, D.; Carmieli, R.; Shekhter, P.; Jentoft, F. C.; Gazit, O. M. ACS Omega 2022, 7, 24656.
|
[22] |
Mikšovsky, P.; Rauchenwald, K.; Naghdi, S.; Rabl, H.; Eder, D.; Konegger, T.; Bica-Schröder, K. ACS Sustainable Chem. Eng. 2024, 12, 1455.
|
[23] |
Campisciano, V.; Gruttadauria, M.; Giacalone, F. ChemCatChem 2018, 11, 90.
|
[24] |
Jayakumar, S.; Li, H.; Chen, J.; Yang, Q. ACS Appl. Mater. Interfaces 2018, 10, 2546.
|
[25] |
Liu, L.-H.; Liu, L.; Chi, H.-R.; Li, C.-N.; Han, Z.-B. Chem. Commun. 2022, 58, 6417.
|
[26] |
Helal, A.; Zahir, M. H.; Albadrani, A.; Ekhwan, M. M. Catal. Lett. 2023, 153, 2883.
|
[27] |
Helal, A.; Alahmari, F.; Usman, M.; Yamani, Z. H. J. Environ. Chem. Eng. 2022, 10, 108061.
|
[28] |
Qiu, L.-Q.; Li, H.-R.; He, L.-N. Acc. Chem. Res. 2023, 56, 2225.
|
[29] |
Wang, K.; Li, H.; Yang, L.; Luo, Y.-Z.; Yao, Z.-J. Surf. Interfaces 2024, 45, 103845.
|
[30] |
Li, J.; Han, Y.; Lin, H.; Wu, N.; Li, Q.; Jiang, J.; Zhu, J. ACS Appl. Mater. Interfaces 2020, 12, 609.
|
[31] |
Xu, L.; Wang, Y.; Sun, Z.; Chen, Z.; Zhao, G.; Kühn, F. E.; Jia, W.-G.; Yun, R.; Zhong, R. Inorg. Chem. 2024, 63, 1828.
|
[32] |
Pourhassan, F.; Khalifeh, R.; Eshghi, H. Fuel 2021, 287, 119567.
|
[33] |
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
doi: 10.1126/science.279.5350.548 pmid: 9438845 |
[34] |
Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature 1998, 396, 152.
|
[35] |
Dokhaee, Z.; Ghiaci, M.; Farrokhpour, H.; Buntkowsky, G.; Breitzke, H. Ind. Eng. Chem. Res. 2020, 59, 12632.
|
[36] |
Liu, Y.; Hu, Y. H.; Zhang, J. R.; Zhou, J. S.; Zhang, Z. K.; Wang, L.; Zhang, J.-L. Microporous Mesoporous Mater. 2022, 337, 111873.
|
[37] |
Pickens, R. N.; Neyhouse, B. J.; Reed, D. T.; Ashton, S. T.; White, J. K. Inorg. Chem. 2018, 57, 11616.
|
[38] |
Shi, Z.; Su, Q.; Ying, T.; Tan, X.; Deng, L.; Dong, L.; Cheng, W. J. CO2 Util. 2020, 39, 101162.
|
[39] |
Sankar, M.; Ajithkumar, T. G.; Sankar, G.; Manikandan, P. Catal. Commun. 2015, 59, 201.
|
[40] |
Yuan, C.; Huang, Z.; Chen, J. Catal. Commun. 2012, 24, 56.
|
[41] |
Cang, R.; Lu, B.; Li, X.; Niu, R.; Zhao, J.; Cai, Q. Chem. Eng. Sci. 2015, 137, 268.
|
[42] |
Mohammadi Ziarani, G.; Ebrahimi, Z.; Mohajer, F.; Badiei, A. Res. Chem. Intermed. 2021, 47, 4583.
|
[43] |
Wang, D.; Guo, X.-Q.; Wang, C.-X.; Wang, Y.-N.; Zhong, R.; Zhu, X.-H.; Cai, L.-H.; Gao, Z.-W.; Hou, X.-F. Adv. Synth. Catal. 2013, 355, 1117.
|
[44] |
Zhou, L.; Peng, L.; Ji, J.; Ma, W.; Hu, J.; Wu, Y.; Geng, J.; Hu, X. J. CO2 Util. 2022, 58, 101910.
|
[45] |
Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Catal. Today 1998, 41, 207.
|
[46] |
Roshan, K. R.; Kathalikkattil, A. C.; Tharun, J.; Kim, D. W.; Won, Y. S.; Park, D. W. Dalton Trans. 2014, 43, 2023.
|
[47] |
Kathalikkattil, A. C.; Kim, D.-W.; Tharun, J.; Soek, H.-G.; Roshan, R.; Park, D.-W. Green Chem. 2014, 16, 1607.
|
[48] |
Xie, Y.; Zhang, Z.; Jiang, T.; He, J.; Han, B.; Wu, T.; Ding, K. Angew. Chem., Int. Ed. 2007, 46, 7255.
|
[49] |
Chen, F.; Tao, S.; Liu, N.; Dai, B. Polyhedron 2021, 196, 114990.
|
[50] |
Li, C.; Xiong, W.; Zhao, T.; Liu, F.; Cai, H.; Chen, P.; Hu, X. Appl. Catal., B 2023, 324, 122217.
|
[51] |
Ratzenhofer, M.; Kisch, H. Angew. Chem., Int. Edit. 1980, 19, 317.
|
[52] |
Tenhumberg, N.; Büttner, H.; Schäffner, B.; Kruse, D.; Blumenstein, M.; Werner, T. Green Chem. 2016, 18, 3775.
|
[53] |
Chen, J.-H.; Deng, C.-H.; Fang, S.; Ma, J.-G.; Cheng, P. Green Chem. 2018, 20, 989.
|
[54] |
Kim, Y.; Ryu, S.; Cho, W.; Kim, M.; Park, M. H.; Kim, Y. Inorg. Chem. 2019, 58, 5922.
|
[55] |
Li, J. W.; Tao, S.; Chen, F.; Li, M.; Liu, N. J. CO2 Util. 2023, 69, 102384.
|
[56] |
Yu, W.-D.; Zhang, Y.; Han, Y.-Y.; Li, B.; Shao, S.; Zhang, L.-P.; Xie, H.-K.; Yan, J. Inorg. Chem. 2021, 60, 3980.
|
[57] |
Shi, Z.; Niu, G.; Han, Q.; Shi, X.; Li, M. Mol. Catal. 2018, 461, 10.
|
[58] |
Cheng, W.; Chen, X.; Sun, J.; Wang, J.; Zhang, S. Catal. Today 2013, 200, 117.
|
[59] |
Rios Yepes, Y.; Quintero, C.; Osorio Meléndez, D.; Daniliuc, C. G.; Martínez, J.; Rojas, R. S. Organometallics 2019, 38, 469.
|
[60] |
Desens, W.; Werner, T. Adv. Synth. Catal. 2016, 358, 622.
|
[61] |
Liu, J.; Yang, G.; Liu, Y.; Zhang, D.; Hu, X.; Zhang, Z. Green Chem. 2020, 22, 4509.
|
[62] |
Motokucho, S.; Morikawa, H. Chem. Commun. 2020, 56, 10678.
|
[63] |
Li, Y.-D.; Cui, D.-X.; Zhu, J.-C.; Huang, P.; Tian, Z.; Jia, Y.-Y.; Wang, P.-A. Green Chem. 2019, 21, 5231.
|
[64] |
Sopeña, S.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. ACS Catal. 2017, 7, 3532.
|
[1] | 段东森, 马媛, 刘宇博, 程富, 朱道勇, 王少华. 可见光诱导的二氧化碳对活化烯烃的脱碳羧基化反应[J]. 有机化学, 2024, 44(5): 1675-1685. |
[2] | 姜晓琳, 王超洋, 武利园, 李跃辉. 含咔唑结构的小分子及聚合物催化二氧化碳转化研究进展[J]. 有机化学, 2024, 44(5): 1423-1444. |
[3] | 夏坤, 张开发, Sher Wali Khan, 阿布力米提•阿布都卡德尔. 二氧化碳参与的三组分偶联反应进展[J]. 有机化学, 2024, 44(5): 1506-1525. |
[4] | 吕帅, 朱钢国, 姚金忠, 周宏伟. 电化学介导的氧化羧化及二氧化碳还原羧化制备羧酸的研究进展[J]. 有机化学, 2024, 44(3): 780-808. |
[5] | 许立锋, 武安国, 于芳羽, 李红茹, 何良年. 可再生能源驱动的CO2基环状碳酸酯合成研究进展[J]. 有机化学, 2024, 44(10): 3091-3105. |
[6] | 张誉元, 杨昌杰, 唐海涛, 潘英明. 异相催化固定二氧化碳合成羰基衍生物的研究进展[J]. 有机化学, 2024, 44(10): 3077-3090. |
[7] | 高小童, 钟昱卿, 冯楠, 孙莹, 杨得勇, 周锋. 惰性键与二氧化碳的电化学羧化反应研究[J]. 有机化学, 2024, 44(10): 3043-3062. |
[8] | 李文珂, 孙北奇, 张雷, 莫凡洋. 基于自由基机理光催化羧基化反应研究进展[J]. 有机化学, 2024, 44(10): 2961-2996. |
[9] | 袁盼锋, 朱灿明, 孟庆元. 光化学转化二氧化碳合成羧酸化合物的研究进展[J]. 有机化学, 2024, 44(10): 2997-3042. |
[10] | 徐辉, 蒋慧娴, 阚磊, 徐佩, 朱旭. 可见光诱导甲酸盐参与的炔烃氢羧基化反应[J]. 有机化学, 2024, 44(10): 3241-3248. |
[11] | 侯静, 黄燕, 李浩, 万远翠, 邵雨, 詹乐武, 王定海, 李斌栋. 二氧化碳自由基阴离子的应用研究进展[J]. 有机化学, 2024, 44(10): 3117-3135. |
[12] | 李嘉元, 易雅平, 席婵娟. 二氧化碳参与的芳香化合物去芳构化羧化反应研究进展[J]. 有机化学, 2024, 44(10): 3136-3146. |
[13] | 周宇飞, 贾肖飞. 非均相催化氢甲酰化的串联反应研究进展[J]. 有机化学, 2024, 44(10): 3147-3158. |
[14] | 石亲, 李臻, 何林, 李玉东, 李跃辉. 硼促进Co催化使用CO2和H2实现仲芳香胺N-甲基化[J]. 有机化学, 2024, 44(10): 3233-3240. |
[15] | 赵盈喆, 张子瑄, 张建玲, 张仁杰, 李美玲, 滕钰楠, 王昊翔. 铈掺杂锆基金属-有机框架纳米颗粒的制备及其光催化二氧化碳环加成反应催化性能研究[J]. 有机化学, 2024, 44(10): 3169-3177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||