研究论文

功能化离子液体[BMim]OH催化α-卤代物与亚磺酸钠盐合成β-酮砜及砜类化合物

  • 王浩洋 ,
  • 成琳 ,
  • 曾星 ,
  • 韩利民 ,
  • 杜玉英 ,
  • 竺宁
展开
  • 内蒙古工业大学化工学院 二氧化碳资源化利用自治区高等学校重点实验室 内蒙古自治区CO2捕集与资源化工程技术研究中心 呼和浩特 010051

收稿日期: 2024-06-08

  修回日期: 2024-08-03

  网络出版日期: 2024-09-02

基金资助

内蒙古自治区自然科学基金(2023LHMS02011); 内蒙古自治区直属高校基本科研业务费(JY20240034); 内蒙古工业大学博士基金(BS2021023); 内蒙古自治区高等学校CO2资源化利用创新团队(NMGIRT2212)

Functionalized Ionic Liquid [BMim]OH-Catalyzed the Synthesis of β-Ketosulfones and Sulfone Compounds between α-Halides and Sodium Sulfinate

  • Haoyang Wang ,
  • Lin Cheng ,
  • Xing Zeng ,
  • Limin Han ,
  • Yuying Du ,
  • Ning Zhu
Expand
  • Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051

Received date: 2024-06-08

  Revised date: 2024-08-03

  Online published: 2024-09-02

Supported by

Natural Science Foundation of Inner Mongolia(2023LHMS02011); Fundamental Research Funds for the Inner Mongolia Autonomous Universities(JY20240034); Doctoral Funds of Inner Mongolia University of Technology(BS2021023); Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT2212)

摘要

以功能化离子液体氢氧化1-丁基-3-甲基咪唑([BMim]OH)为催化剂, 由α-卤代物与亚磺酸钠盐通过偶联反应构建了β-酮砜和砜类化合物的绿色合成方法. 在体积分数为50%的乙醇水溶液中反应2~6 h, 以65%~99%的产率获得34种不同的β-酮砜和砜. 此外, 该反应可以放大至克级规模, 并且[BMim]OH催化剂可以循环使用至少4次, 产率无明显下降. 机理研究表明, 反应过程中催化量的[BMim]OH首先与苯亚磺酸根(PhSO2)作用形成中间体1-丁基-3-甲基咪唑苯亚磺酸盐([BMim][PhSO2]), 之后利用中间体硫负离子的强亲核性与α-溴代苯乙酮反应, 从而促进该SN2反应的进行. 此方法具有操作简便、产率高、官能团兼容性好、无需使用金属催化剂及对环境友好等优点.

本文引用格式

王浩洋 , 成琳 , 曾星 , 韩利民 , 杜玉英 , 竺宁 . 功能化离子液体[BMim]OH催化α-卤代物与亚磺酸钠盐合成β-酮砜及砜类化合物[J]. 有机化学, 2025 , 45(1) : 246 -255 . DOI: 10.6023/cjoc202406010

Abstract

The coupling reaction of α-halides and sodium sulfinate was catalyzed by functionalized ionic liquid [BMimlOH. 34 types β-ketone sulfones and sulfone compounds were obtained with medium to high yields (65%~99%) under mild and environmentally benign conditions. The reaction was scaled up to the gram scale, and [BMim]OH catalyst was recycled for 4 times without a significant decrease in yield. The results of 1H NMR studies indicated that the initial event should be the catalytic interaction between [BMim]OH and the raw material sodium sulfite, leading to the formation of an intermediate [BMim][PhSO2] in the reaction. Because the sulfur anion of intermediate had strong nucleophilicity, it reacted with α-bromoacetophenone which promoted the progress of the SN2 reaction. The method offered advantages including simplicity of operation, stable and cycling catalyst, high yields, good functional group compatibility, metal-free catalysts, and environmental friendliness.

参考文献

[1]
(a) Pal, T. K.; Dey, S.; Pathak, T. J. Org. Chem. 2011, 76, 3034.
[1]
(b) Xu, W. M.; Han, F.-F.; He, M.; Hu, D. Y.; He, J.; Yang, S.; Song, B. A. J. Agric. Food Chem. 2012, 60, 1036.
[1]
(c) Zhang, B.; Wassermann, A. M.; Vogt, M.; Bajorath, J. J. Chem. Inf. Model. 2012, 52, 3138.
[1]
(d) Consalvi, S.; Alfonso, S.; Di Capua, A.; Poce, G.; Pirolli, A.; Sabatino, M.; Ragno, R.; Anzini, M.; Sartini, S.; La Motta, C.; Di Cesare, M. L.; Ghelardini, C.; Biava, M. Bioorg. Med. Chem. 2015, 23, 810.
[2]
(a) Aranapakam, V.; Grosu, G. T.; Davis, J. M.; Hu, B.; Ellingboe, J.; Baker, J. L.; Skotnicki, J. S.; DiJoseph, J. F.; Sung, A.; Sharr, M. A.; Killar, L. M.; Walter, T.; Jin, G. X.; Cowling, R. J. Med. Chem. 2003, 46, 2361.
[2]
(b) Peng, H.; Cheng, Y.; Ni, N.; Li, M.; Choudhary, G.; Chou, H. T.; Lu, C. D.; Tai, P. C.; Wang, B. ChemMedChem 2009, 4, 1457.
[2]
(c) Abdel-Aziz, H. A.; Al-Rashood, K. A.; ElTahir, K. E. H.; Suddek, G. M. Eur. J. Med. Chem. 2014, 80, 416.
[2]
(d) Zheng, M.; Li, G.; Lu, H. Org. Lett. 2019, 21, 1216.
[3]
Yalavarthi, N. R.; Gundoju, N.; Bokam, R.; Ponnapalli, M. G. J. Chem. Sci. 2019, 131.
[4]
Han, F.; Su, B.; Song, P.; Wang, Y.; Jia, L.; Xun, S.; Hu, M.; Zou, L. Tetrahedron 2018, 74, 5908.
[5]
Yavari, I.; Shaabanzadeh, S. Org. Lett. 2020, 22, 464.
[6]
Xu, J.; Shen, C.; Qin, X.; Wu, J.; Zhang, P.; Liu, X. J. Org. Chem. 2021, 86, 3706.
[7]
Wang, Y. J.; Zhao, Y. H.; Cai, C. Q.; Wang, L. Y.; Gong, H. Org. Lett. 2021, 23, 8296.
[8]
Pampana, V. K. K.; Charpe, V. P.; Sagadevan, A.; Das, D. K.; Lin, C.-C.; Hwu, J. R.; Hwang, K. C. Green Chem. 2021, 23, 3569.
[9]
Fang, Y.; Xu, D. P.; Yu, Y. L.; Tang, R. M.; Dai, S.-S.; Wang, G. H. Eur. J. Org. Chem. 2022, 13, 1.
[10]
Song, Y. L.; Wang, X. C.; Huang, C. P.; Liang, F. B.; Yu, Z. C.; Chen, B. H. Chin. J. Org. Chem. 2013, 33, 1715 (in Chinese).
[10]
(宋彦磊, 王新承, 黄崇品, 梁凤兵, 毓志超, 陈标华, 有机化学, 2013, 33, 1715.)
[11]
(a) Lourenço, N. M. T.; Afonso, C. A. M. Tetrahedron 2003, 59, 789.
[11]
(b) Jorapur, Y. R.; Chi, D. Y. Bull. Korean Chem. Soc. 2006, 27, 345.
[11]
(c) Zhao, D. W.; Wu, Y. T.; Chen, T.-T.; Dai, L. Y.; Wang, Y.-Y. Chin. J. Org. Chem. 2013, 33, 1791 (in Chinese).
[11]
(赵东旺, 吴悦彤, 陈婷婷, 戴立益, 王媛媛, 有机化学, 2013, 33, 1791.)
[12]
(a) Hu, Y.; Chen, Z. C.; Le, Z. G.; Zheng, Q. G. J. Chem. Res. 2004, 4, 267.
[12]
(b) Li, J. X.; Yang, S. R.; Wu, W. Q.; Jiang, H. F. Eur. J. Org. Chem. 2018, 1284.
[12]
(c) Lai, Y. L.; Wu, L. Y.; Xiong, X.; Lan, Y. W.; Lin, Y.-Y.; Zhong, R. M.; Jiang, H. F.; Li, J. X. Green Synth. Catal.DOI: 10.1016/j.gresc.2024.02.003.
[13]
(a) Suryakiran, N.; Prabhakar, P.; Rajesh, K.; Suresh, V.; Venkateswarlu, Y. J. Mol. Catal. A: Chem. 2007, 270, 201.
[13]
(b) Hu, M.; Lin, Z. D.; Li, J. X.; Wu, W. Q.; Jiang, H. F. Green Chem. 2020, 22, 5584.
[13]
(c) Li, J. X.; He, D.; Lin, Z. D.; Cen, L. Y.; Wu, W. Q.; Jiang, H. F. Green Chem. 2022, 24, 1983.
[14]
Kumar, A.; Muthyala, M. K. Tetrahedron Lett. 2011, 52, 5368.
[15]
Moulton, R. US 20030094380, 2003.
[16]
Yuen, A. K. L.; Masters, A. F.; Maschmeyer, T. Catal. Today 2013, 200, 9.
[17]
Zhang, H. L.; Li, M. Y.; Wang, N. Appl. Chem. Ind. 2013, 42, 1866 (in Chinese).
[17]
(张海龙, 李梦耀, 王娜, 应用化工, 2013, 42, 1866.)
[18]
Song, Z.; Wang, H.; Xing, L. J. Solution Chem. 2009, 38, 1139.
[19]
Zhao, P.-P.; Hu, K.; Cai, P.; Cheng, G. Z. Univ. Chem. 2022, 37, 2208150 (in Chinese).
[19]
(赵苹苹, 胡锴, 蔡苹, 程功臻, 大学化学, 2022, 37, 2208150.)
[20]
Ye, M. F.; Cao, Y. Z.; Ding, R. H.; Lei, Z. P.; Jin, L.; Zhang, J. Chem. Ind. Times 2019, 33, 9 (in Chinese).
[20]
(叶明富, 曹云钟, 丁仁浩, 雷智平, 金玲, 张婧, 化工时刊, 2019, 33, 9.)
[21]
Liu, L.; Xiao, H.; Xiao, F. H.; Xie, Y. J.; Huang, H. W.; Deng, G. J. Chin. J. Org. Chem. 2021, 41, 4749 (in Chinese).
[21]
(刘丽, 肖洪, 肖福红, 谢艳军, 黄华文, 邓国军, 有机化学, 2021, 41, 4749.)
[22]
Xu, L.; Lv, L.-L.; Wang, X. S. Chin. J. Org. Chem. 2023, 43, 3644 (in Chinese).
[22]
(许力, 吕兰兰, 王香善, 有机化学, 2023, 43, 3644.)
[23]
Gulizabair, A. M.D. Dissertation, Xinjiang Normal University, Xinjiang, 2021 (in Chinese).
[23]
(古丽扎拜尔•阿不力皮孜, 硕士论文, 新疆师范大学, 新疆, 2021.)
[24]
Chen, Z.; Guo, K.; Chen, R. S.; Gu, C.; Zhou, H. T.; Zhu, Y. G. Chin. J. Org. Chem. 2018, 38, 963 (in Chinese).
[24]
(陈震, 郭康, 陈荣顺, 顾晨, 周华婷, 朱映光, 有机化学, 2018, 38, 963.)
[25]
He, Y.; Yin, H. G.; Zeng, Z. W.; Zeng, H. T. Shandong Chem. Ind. 2022, 51, 8 (in Chinese).
[25]
(何燕, 尹红果, 曾智文, 曾慧婷, 山东化工, 2022, 51, 8.)
[26]
(a) Liu, C. R.; Ding, L. H.; Guo, G.; Liu, W.-W. Eur. J. Org. Chem. 2016, 2016, 910.
[26]
(b) Suryakiran, N.; Reddy, T. S.; Ashalatha, K.; Lakshman, M.; Venkateswarlu, Y. Tetrahedron. Lett. 2006, 47, 3853.
[27]
(a) Rawat, V. S.; Reddy, P. L. M.; Sreedhar, B. RSC. Adv. 2014, 4, 5165.
[27]
(b) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu, W.; Jiang, H. Angew. Chem., Int. Ed. 2014, 53, 4205.
[28]
(a) Yang, J.; Li, H. Q.; Li, M. H.; Peng, J.-J.; Gu, Y. L. Adv. Synth. Catal. 2012, 354, 688.
[28]
(b) Chang, M. Y.; Cheng, Y. C.; Lu, Y. J. Org. Lett. 2014, 16, 6252.
[29]
(a) Fu, J.; Li, Q. Z.; Li, M. P.; Du, Z. Y. ChemistrySelect 2020, 5, 2985.
[29]
(b) Chen, X. Y.; Lu, S. X.; Zheng, Y.-Y.; Wang, J. G.; Yang, L.; Sun, P. Adv. Synth. Catal. 2022, 364, 1305.
[30]
(a) Wagh, G. D.; Autade, S. B.; Kulkarni, R. V.; Akamanchi, K. G. New J. Chem. 2020, 44, 10554.
[30]
(b) Truitt, P.; Stead, R.; Long, L. M.; Middleton, W. J. J. Am. Chem. Soc. 1949, 71, 3511.
[31]
Jiang, H.; Cheng, Y.; Zhang, Y.; Yu, S. Eur. J. Org. Chem. 2013, 2013, 5485.
[32]
(a) Xiong, Y. H.; Weng, J.; Lu, G. Adv. Synth. Catal. 2018, 360, 1611.
[32]
(b) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481.
[33]
Tsui, G. C.; Glenadel, Q.; Lau, C.; Lautens, M. Org. Lett. 2011, 13, 208.
[34]
Yuan, Z. Y.; Zhang, S.; Teng, F.; Jin, X. F.; Sheng, W. B.; Gui, Q. W. ChemistrySelect 2022, 7, e202103355.
[35]
(a) Reddy, R. J.; Kumar, J.-J.; Kumari, A. H. Eur. J. Org. Chem. 2019, 23, 3771.
[35]
(b) Jeyakumar, K.; Chand, D. K. Tetrahedron Lett. 2006, 47, 4573.
[35]
(c) Wang, Z.; Jiang, J.; Pang, S.; Zhou, Y.; Guan, C.; Gao, Y.; Li, J.; Yang, Y.; Qiu, W.; Jiang, C. C. Environ. Sci. Technol. 2018, 52, 11276.
[36]
Wildeman, J.; Van Leusen, A. M. Synthesis 1979, 1979, 733.
[37]
Karimi, B.; Khorasani, M. ACS. Catal. 2013, 3, 1657.
[38]
Zhang, F. X.; Zhou, F. X.; Yin, S. H.; Long, B.; Deng, G. J.; Ali, A.; Song, T. Appl. Catal., B 2023, 337, 123004.
[39]
Onanong, V.; Khanchyd, M.; Praewpan, K.; Chutima, K.; Chutima, J. Bioorg. Med. Chem. Lett. 2022, 63, 128652
文章导航

/