功能化离子液体[BMim]OH催化α-卤代物与亚磺酸钠盐合成β-酮砜及砜类化合物
收稿日期: 2024-06-08
修回日期: 2024-08-03
网络出版日期: 2024-09-02
基金资助
内蒙古自治区自然科学基金(2023LHMS02011); 内蒙古自治区直属高校基本科研业务费(JY20240034); 内蒙古工业大学博士基金(BS2021023); 内蒙古自治区高等学校CO2资源化利用创新团队(NMGIRT2212)
Functionalized Ionic Liquid [BMim]OH-Catalyzed the Synthesis of β-Ketosulfones and Sulfone Compounds between α-Halides and Sodium Sulfinate
Received date: 2024-06-08
Revised date: 2024-08-03
Online published: 2024-09-02
Supported by
Natural Science Foundation of Inner Mongolia(2023LHMS02011); Fundamental Research Funds for the Inner Mongolia Autonomous Universities(JY20240034); Doctoral Funds of Inner Mongolia University of Technology(BS2021023); Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT2212)
以功能化离子液体氢氧化1-丁基-3-甲基咪唑([BMim]OH)为催化剂, 由α-卤代物与亚磺酸钠盐通过偶联反应构建了β-酮砜和砜类化合物的绿色合成方法. 在体积分数为50%的乙醇水溶液中反应2~6 h, 以65%~99%的产率获得34种不同的β-酮砜和砜. 此外, 该反应可以放大至克级规模, 并且[BMim]OH催化剂可以循环使用至少4次, 产率无明显下降. 机理研究表明, 反应过程中催化量的[BMim]OH首先与苯亚磺酸根(PhSO2-)作用形成中间体1-丁基-3-甲基咪唑苯亚磺酸盐([BMim][PhSO2]), 之后利用中间体硫负离子的强亲核性与α-溴代苯乙酮反应, 从而促进该SN2反应的进行. 此方法具有操作简便、产率高、官能团兼容性好、无需使用金属催化剂及对环境友好等优点.
关键词: 氢氧化1-丁基-3-甲基咪唑; 催化; 偶联反应; β-酮砜和砜
王浩洋 , 成琳 , 曾星 , 韩利民 , 杜玉英 , 竺宁 . 功能化离子液体[BMim]OH催化α-卤代物与亚磺酸钠盐合成β-酮砜及砜类化合物[J]. 有机化学, 2025 , 45(1) : 246 -255 . DOI: 10.6023/cjoc202406010
The coupling reaction of α-halides and sodium sulfinate was catalyzed by functionalized ionic liquid [BMimlOH. 34 types β-ketone sulfones and sulfone compounds were obtained with medium to high yields (65%~99%) under mild and environmentally benign conditions. The reaction was scaled up to the gram scale, and [BMim]OH catalyst was recycled for 4 times without a significant decrease in yield. The results of 1H NMR studies indicated that the initial event should be the catalytic interaction between [BMim]OH and the raw material sodium sulfite, leading to the formation of an intermediate [BMim][PhSO2] in the reaction. Because the sulfur anion of intermediate had strong nucleophilicity, it reacted with α-bromoacetophenone which promoted the progress of the SN2 reaction. The method offered advantages including simplicity of operation, stable and cycling catalyst, high yields, good functional group compatibility, metal-free catalysts, and environmental friendliness.
| [1] | (a) Pal, T. K.; Dey, S.; Pathak, T. J. Org. Chem. 2011, 76, 3034. |
| [1] | (b) Xu, W. M.; Han, F.-F.; He, M.; Hu, D. Y.; He, J.; Yang, S.; Song, B. A. J. Agric. Food Chem. 2012, 60, 1036. |
| [1] | (c) Zhang, B.; Wassermann, A. M.; Vogt, M.; Bajorath, J. J. Chem. Inf. Model. 2012, 52, 3138. |
| [1] | (d) Consalvi, S.; Alfonso, S.; Di Capua, A.; Poce, G.; Pirolli, A.; Sabatino, M.; Ragno, R.; Anzini, M.; Sartini, S.; La Motta, C.; Di Cesare, M. L.; Ghelardini, C.; Biava, M. Bioorg. Med. Chem. 2015, 23, 810. |
| [2] | (a) Aranapakam, V.; Grosu, G. T.; Davis, J. M.; Hu, B.; Ellingboe, J.; Baker, J. L.; Skotnicki, J. S.; DiJoseph, J. F.; Sung, A.; Sharr, M. A.; Killar, L. M.; Walter, T.; Jin, G. X.; Cowling, R. J. Med. Chem. 2003, 46, 2361. |
| [2] | (b) Peng, H.; Cheng, Y.; Ni, N.; Li, M.; Choudhary, G.; Chou, H. T.; Lu, C. D.; Tai, P. C.; Wang, B. ChemMedChem 2009, 4, 1457. |
| [2] | (c) Abdel-Aziz, H. A.; Al-Rashood, K. A.; ElTahir, K. E. H.; Suddek, G. M. Eur. J. Med. Chem. 2014, 80, 416. |
| [2] | (d) Zheng, M.; Li, G.; Lu, H. Org. Lett. 2019, 21, 1216. |
| [3] | Yalavarthi, N. R.; Gundoju, N.; Bokam, R.; Ponnapalli, M. G. J. Chem. Sci. 2019, 131. |
| [4] | Han, F.; Su, B.; Song, P.; Wang, Y.; Jia, L.; Xun, S.; Hu, M.; Zou, L. Tetrahedron 2018, 74, 5908. |
| [5] | Yavari, I.; Shaabanzadeh, S. Org. Lett. 2020, 22, 464. |
| [6] | Xu, J.; Shen, C.; Qin, X.; Wu, J.; Zhang, P.; Liu, X. J. Org. Chem. 2021, 86, 3706. |
| [7] | Wang, Y. J.; Zhao, Y. H.; Cai, C. Q.; Wang, L. Y.; Gong, H. Org. Lett. 2021, 23, 8296. |
| [8] | Pampana, V. K. K.; Charpe, V. P.; Sagadevan, A.; Das, D. K.; Lin, C.-C.; Hwu, J. R.; Hwang, K. C. Green Chem. 2021, 23, 3569. |
| [9] | Fang, Y.; Xu, D. P.; Yu, Y. L.; Tang, R. M.; Dai, S.-S.; Wang, G. H. Eur. J. Org. Chem. 2022, 13, 1. |
| [10] | Song, Y. L.; Wang, X. C.; Huang, C. P.; Liang, F. B.; Yu, Z. C.; Chen, B. H. Chin. J. Org. Chem. 2013, 33, 1715 (in Chinese). |
| [10] | (宋彦磊, 王新承, 黄崇品, 梁凤兵, 毓志超, 陈标华, 有机化学, 2013, 33, 1715.) |
| [11] | (a) Lourenço, N. M. T.; Afonso, C. A. M. Tetrahedron 2003, 59, 789. |
| [11] | (b) Jorapur, Y. R.; Chi, D. Y. Bull. Korean Chem. Soc. 2006, 27, 345. |
| [11] | (c) Zhao, D. W.; Wu, Y. T.; Chen, T.-T.; Dai, L. Y.; Wang, Y.-Y. Chin. J. Org. Chem. 2013, 33, 1791 (in Chinese). |
| [11] | (赵东旺, 吴悦彤, 陈婷婷, 戴立益, 王媛媛, 有机化学, 2013, 33, 1791.) |
| [12] | (a) Hu, Y.; Chen, Z. C.; Le, Z. G.; Zheng, Q. G. J. Chem. Res. 2004, 4, 267. |
| [12] | (b) Li, J. X.; Yang, S. R.; Wu, W. Q.; Jiang, H. F. Eur. J. Org. Chem. 2018, 1284. |
| [12] | (c) Lai, Y. L.; Wu, L. Y.; Xiong, X.; Lan, Y. W.; Lin, Y.-Y.; Zhong, R. M.; Jiang, H. F.; Li, J. X. Green Synth. Catal.DOI: 10.1016/j.gresc.2024.02.003. |
| [13] | (a) Suryakiran, N.; Prabhakar, P.; Rajesh, K.; Suresh, V.; Venkateswarlu, Y. J. Mol. Catal. A: Chem. 2007, 270, 201. |
| [13] | (b) Hu, M.; Lin, Z. D.; Li, J. X.; Wu, W. Q.; Jiang, H. F. Green Chem. 2020, 22, 5584. |
| [13] | (c) Li, J. X.; He, D.; Lin, Z. D.; Cen, L. Y.; Wu, W. Q.; Jiang, H. F. Green Chem. 2022, 24, 1983. |
| [14] | Kumar, A.; Muthyala, M. K. Tetrahedron Lett. 2011, 52, 5368. |
| [15] | Moulton, R. US 20030094380, 2003. |
| [16] | Yuen, A. K. L.; Masters, A. F.; Maschmeyer, T. Catal. Today 2013, 200, 9. |
| [17] | Zhang, H. L.; Li, M. Y.; Wang, N. Appl. Chem. Ind. 2013, 42, 1866 (in Chinese). |
| [17] | (张海龙, 李梦耀, 王娜, 应用化工, 2013, 42, 1866.) |
| [18] | Song, Z.; Wang, H.; Xing, L. J. Solution Chem. 2009, 38, 1139. |
| [19] | Zhao, P.-P.; Hu, K.; Cai, P.; Cheng, G. Z. Univ. Chem. 2022, 37, 2208150 (in Chinese). |
| [19] | (赵苹苹, 胡锴, 蔡苹, 程功臻, 大学化学, 2022, 37, 2208150.) |
| [20] | Ye, M. F.; Cao, Y. Z.; Ding, R. H.; Lei, Z. P.; Jin, L.; Zhang, J. Chem. Ind. Times 2019, 33, 9 (in Chinese). |
| [20] | (叶明富, 曹云钟, 丁仁浩, 雷智平, 金玲, 张婧, 化工时刊, 2019, 33, 9.) |
| [21] | Liu, L.; Xiao, H.; Xiao, F. H.; Xie, Y. J.; Huang, H. W.; Deng, G. J. Chin. J. Org. Chem. 2021, 41, 4749 (in Chinese). |
| [21] | (刘丽, 肖洪, 肖福红, 谢艳军, 黄华文, 邓国军, 有机化学, 2021, 41, 4749.) |
| [22] | Xu, L.; Lv, L.-L.; Wang, X. S. Chin. J. Org. Chem. 2023, 43, 3644 (in Chinese). |
| [22] | (许力, 吕兰兰, 王香善, 有机化学, 2023, 43, 3644.) |
| [23] | Gulizabair, A. M.D. Dissertation, Xinjiang Normal University, Xinjiang, 2021 (in Chinese). |
| [23] | (古丽扎拜尔•阿不力皮孜, 硕士论文, 新疆师范大学, 新疆, 2021.) |
| [24] | Chen, Z.; Guo, K.; Chen, R. S.; Gu, C.; Zhou, H. T.; Zhu, Y. G. Chin. J. Org. Chem. 2018, 38, 963 (in Chinese). |
| [24] | (陈震, 郭康, 陈荣顺, 顾晨, 周华婷, 朱映光, 有机化学, 2018, 38, 963.) |
| [25] | He, Y.; Yin, H. G.; Zeng, Z. W.; Zeng, H. T. Shandong Chem. Ind. 2022, 51, 8 (in Chinese). |
| [25] | (何燕, 尹红果, 曾智文, 曾慧婷, 山东化工, 2022, 51, 8.) |
| [26] | (a) Liu, C. R.; Ding, L. H.; Guo, G.; Liu, W.-W. Eur. J. Org. Chem. 2016, 2016, 910. |
| [26] | (b) Suryakiran, N.; Reddy, T. S.; Ashalatha, K.; Lakshman, M.; Venkateswarlu, Y. Tetrahedron. Lett. 2006, 47, 3853. |
| [27] | (a) Rawat, V. S.; Reddy, P. L. M.; Sreedhar, B. RSC. Adv. 2014, 4, 5165. |
| [27] | (b) Tang, X.; Huang, L.; Xu, Y.; Yang, J.; Wu, W.; Jiang, H. Angew. Chem., Int. Ed. 2014, 53, 4205. |
| [28] | (a) Yang, J.; Li, H. Q.; Li, M. H.; Peng, J.-J.; Gu, Y. L. Adv. Synth. Catal. 2012, 354, 688. |
| [28] | (b) Chang, M. Y.; Cheng, Y. C.; Lu, Y. J. Org. Lett. 2014, 16, 6252. |
| [29] | (a) Fu, J.; Li, Q. Z.; Li, M. P.; Du, Z. Y. ChemistrySelect 2020, 5, 2985. |
| [29] | (b) Chen, X. Y.; Lu, S. X.; Zheng, Y.-Y.; Wang, J. G.; Yang, L.; Sun, P. Adv. Synth. Catal. 2022, 364, 1305. |
| [30] | (a) Wagh, G. D.; Autade, S. B.; Kulkarni, R. V.; Akamanchi, K. G. New J. Chem. 2020, 44, 10554. |
| [30] | (b) Truitt, P.; Stead, R.; Long, L. M.; Middleton, W. J. J. Am. Chem. Soc. 1949, 71, 3511. |
| [31] | Jiang, H.; Cheng, Y.; Zhang, Y.; Yu, S. Eur. J. Org. Chem. 2013, 2013, 5485. |
| [32] | (a) Xiong, Y. H.; Weng, J.; Lu, G. Adv. Synth. Catal. 2018, 360, 1611. |
| [32] | (b) Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. J. Am. Chem. Soc. 2013, 135, 11481. |
| [33] | Tsui, G. C.; Glenadel, Q.; Lau, C.; Lautens, M. Org. Lett. 2011, 13, 208. |
| [34] | Yuan, Z. Y.; Zhang, S.; Teng, F.; Jin, X. F.; Sheng, W. B.; Gui, Q. W. ChemistrySelect 2022, 7, e202103355. |
| [35] | (a) Reddy, R. J.; Kumar, J.-J.; Kumari, A. H. Eur. J. Org. Chem. 2019, 23, 3771. |
| [35] | (b) Jeyakumar, K.; Chand, D. K. Tetrahedron Lett. 2006, 47, 4573. |
| [35] | (c) Wang, Z.; Jiang, J.; Pang, S.; Zhou, Y.; Guan, C.; Gao, Y.; Li, J.; Yang, Y.; Qiu, W.; Jiang, C. C. Environ. Sci. Technol. 2018, 52, 11276. |
| [36] | Wildeman, J.; Van Leusen, A. M. Synthesis 1979, 1979, 733. |
| [37] | Karimi, B.; Khorasani, M. ACS. Catal. 2013, 3, 1657. |
| [38] | Zhang, F. X.; Zhou, F. X.; Yin, S. H.; Long, B.; Deng, G. J.; Ali, A.; Song, T. Appl. Catal., B 2023, 337, 123004. |
| [39] | Onanong, V.; Khanchyd, M.; Praewpan, K.; Chutima, K.; Chutima, J. Bioorg. Med. Chem. Lett. 2022, 63, 128652 |
/
| 〈 |
|
〉 |