综述与进展

钯催化惰性亚甲基C(sp3)—H键分子间官能团化反应

  • 梅明顺 ,
  • 张扬会
展开
  • a 同济大学化学科学与工程学院 上海 200092
    b 同济大学 上海市化学品分析、风险评估与控制重点实验室 上海 200092

收稿日期: 2024-06-09

  修回日期: 2024-07-17

  网络出版日期: 2024-09-02

基金资助

国家自然科学基金(22371211); 上海市自然科学基金(23ZR1468700)

Palladium-Catalyzed Intermolecular Functionalization of Unactivated Methylene C(sp3)—H Bonds

  • Mingshun Mei ,
  • Yanghui Zhang
Expand
  • a School of Chemical Science and Engineering, Tongji University, Shanghai 200092
    b Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092

Received date: 2024-06-09

  Revised date: 2024-07-17

  Online published: 2024-09-02

Supported by

National Natural Science Foundation of China(22371211); Natural Science Foundation of Shanghai City(23ZR1468700)

摘要

尽管过渡金属催化的亚甲基C(sp3)—H官能团化是一项巨大的挑战, 但近年来已取得一系列显著进展. 此文综述了钯催化的惰性亚甲基C(sp3)—H键的分子间官能化反应, 讨论了包括芳基化、烷基化、烯基化/炔基化、乙酰氧基化、胺化、卤化、硼化和硅化在内的多种反应. 由于亚甲基C(sp3)—H键的惰性特性, 其官能化反应通常依赖于导向基策略, 这不仅能控制区域选择性, 还能解决低反应性问题. 各种导向基, 包括强配位的双齿辅助基和弱配位的天然官能团, 已被证明在实现亚甲基C(sp3)—H官能化方面是有效的.

本文引用格式

梅明顺 , 张扬会 . 钯催化惰性亚甲基C(sp3)—H键分子间官能团化反应[J]. 有机化学, 2025 , 45(2) : 620 -640 . DOI: 10.6023/cjoc202406012

Abstract

Although transition metal-catalyzed methylene C(sp3)—H functionalization is a great challenge, it has made noticeable progress in recent years. This review specifically describes Pd-catalyzed intermolecular functionalization of unactivated methylene C(sp3)—H bonds. A variety of reactions, including arylation, alkylation, alkenylation/alkynylation, acetoxylation, amination, halogenation, borylation, and silylation reactions, have been discussed. Due to the inert properties, methylene C(sp3)—H functionalization reaction usually relies on the use of directing group strategies, which can not only control regioselectivity but also address low reactivity issue. Various directing groups, including strongly coordinating bidentate auxiliaries and weakly coordinating innate functional groups, have proven to be effective for enabling methylene C(sp3)—H functionalization.

参考文献

[1]
(a) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588.
[1]
(b) Chu, J. C. K.; Rovis, T. Angew. Chem., Int. Ed. 2018, 57, 62.
[1]
(c) Chen, Z.; Rong, M.-Y.; Nie, J.; Zhu, X.-F.; Shi, B.-F.; Ma, J.-A. Chem. Soc. Rev. 2019, 48, 4921.
[1]
(d) Zhang, Y.-H.; Shi, G.-F.; Yu, J.-Q. In Comprehensive Organic Synthesis, 2nd ed.; Ed.: Molander, G., Knochel, P., Elsevie, Oxford, U.K., 2014, Vol. 3, p. 1101.
[2]
He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754.
[3]
(a) Herrmann, P.; Bach, T. Chem. Soc. Rev. 2011, 40, 2022.
[3]
(b) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333.
[3]
(c) Antermite, D.; Bull, J. A. Synthesis 2019, 51, 3171.
[3]
(d) Mishra, A. A.; Subhedar, D.; Bhanage, B. M. Chem. Rec. 2019, 19, 1829.
[3]
(e) Lucas, E. L.; Lam, N. Y. S.; Zhuang, Z.; Chan, H. S. S.; Strassfeld, D. A.; Yu, J.-Q. Acc. Chem. Res. 2022, 55, 537.
[3]
(f) Chen, X.; Li, B.; Tong, H.; Qi, L.; He, G.; Chen, G. Chin. J. Chem. 2022, 40, 2502.
[3]
(g) Wang, P.-S.; Gong, L.-Z. Chin. J. Chem. 2023, 41, 1841.
[3]
(h) Han, Y. Q.; Shi, B.-F. Acta Chim. Sinica 2023, 81, 1522.
[3]
(i) Yoo, W.-J.; Li, C.-J. In C—H Activation, Ed.: Yu, J.-Q.; Shi, Z., Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, p. 281.
[4]
(a) Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 19598.
[4]
(b) Xiao, K.-J.; Lin, D. W.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 8138.
[4]
(c) Chan, K. S. L.; Fu, H.-Y.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 2042.
[4]
(d) Wu, Q.-F.; Wang, X.-B.; Shen, P.-X.; Yu, J.-Q. ACS Catal. 2018, 8, 2577.
[4]
(e) Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu, J.-Q. J. Am. Chem. Soc. 2018, 140, 6545.
[4]
(f) Hu, L.; Shen, P.-X.; Shao, Q.; Hong, K.; Qiao, J. X.; Yu, J.-Q. Angew. Chem. Int. Ed. 2019, 58, 2134.
[4]
(g) Xiao, L.-J.; Hong, K.; Luo, F.; Hu, L.; Ewing, W. R.; Yeung, K.-S.; Yu, J.-Q. Angew. Chem. Int. Ed. 2020, 59, 9594.
[4]
(h) Zhuang, Z.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 12015.
[5]
Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069.
[6]
(a) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.
[6]
(b) Park, H.; Verma, P.; Hong, K.; Yu, J.-Q. Nat. Chem. 2018, 10, 755.
[6]
(c) Mei, M.-S.; Zhang, Y. Org. Lett. 2023, 25, 4985.
[7]
(a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
[7]
(b) Song, G. Y.; Li, X. W. Acc. Chem. Res. 2015, 48, 1007.
[7]
(c) He, G.; Wang, B.; Nack, W. A.; Chen, G. Acc. Chem. Res. 2016, 49, 635.
[7]
(d) Zhang, Q.; Shi, B.-F. Acc. Chem. Res. 2021, 54, 2750.
[7]
(e) Babu, S. A.; Aggarwal, Y.; Patel, P.; Tomar, R. Chem. Commun. 2022, 58, 2612.
[7]
(f) He, Y.; Huang, Z.; Wu, K.; Ma, J.; Zhou, Y.-G.; Yu, Z. Chem. Soc. Rev. 2022, 51, 2759.
[7]
(g) Das, J.; Ali, W.; Maiti, D. Trends Chem. 2023, 5, 551.
[7]
(h) Yang, X.; Liu, X.; Wang, L. Chin. J. Org. Chem. 2023, 43, 914 (in Chinese).
[7]
(杨幸, 刘旭, 王丽佳, 有机化学, 2023, 43, 914.)
[8]
(a) Jin, L.; Wang, J.; Dong, G. Angew. Chem., Int. Ed. 2018, 57, 12352.
[8]
(b) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.; Shi, B.-F. Chem. Rev. 2021, 121, 14957.
[9]
Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
[10]
Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965.
[11]
Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006, 8, 3391.
[12]
Yan, S.-B.; Zhang, S.; Duan, W.-L. Org. Lett. 2015, 17, 2458.
[13]
Tong, H.-R.; Zheng, S.; Li, X.; Deng, Z.; Wang, H.; He, G.; Peng, Q.; Chen, G. ACS Catal. 2018, 8, 11502.
[14]
Huang, Y.; Lv, X.; Tong, H.-R.; He, W.; Bai, Z.; Wang, H.; He, G.; Chen, G. Org. Lett. 2024, 26, 94.
[15]
Pan, F.; Shen, P.-X.; Zhang, L.-S.; Wang, X.; Shi, Z.-J. Org. Lett. 2013, 15, 4758.
[16]
Gou, Q.; Zhang, Z.-F.; Liu, Z.-C.; Qin, J. J. Org. Chem. 2015, 80, 3176.
[17]
(a) Ling, P.-X.; Fang, S.-L.; Yin, X.-S.; Chen, K.; Sun, B.-Z.; Shi, B.-F. Chem.-Eur. J. 2015, 21, 17503.
[17]
(b) Chen, K.; Li, Z.-W.; Shen, P.-X.; Zhao, H.-W.; Shi, Z.-J. Chem.-Eur. J. 2015, 21, 7389.
[18]
Luo, F.; Yang, J.; Li, Z.; Xiang, H.; Zhou, X. Adv. Synth. Catal. 2016, 358, 887.
[19]
Lou, J.; Wang, Q.; He, Y.; Yu, Z. Adv. Synth. Catal. 2018, 360, 4571.
[20]
Yan, S.-Y.; Han, Y.-Q.; Yao, Q.-J.; Nie, X.-L.; Liu, L.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 9093.
[21]
Han, Y.-Q.; Yang, X.; Kong, K.-X.; Deng, Y.-T.; Wu, L.-S.; Ding, Y.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 20455.
[22]
Zhu, R.-Y.; Liu, L.-Y.; Park, H. S.; Hong, K.; Wu, Y.; Senanayake, C. H.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 16080.
[23]
Xia, G.; Weng, J.; Liu, L.; Verma, P.; Li, Z.; Yu, J.-Q. Nat. Chem. 2019, 11, 571.
[24]
Probst, N.; Grelier, G.; Dahaoui, S.; Alami, M.; Gandon, V.; Messaoudi, S. ACS Catal. 2018, 8, 7781.
[25]
He, G.; Chen, G. Angew. Chem., Int. Ed. 2011, 50, 5192.
[26]
Zhang, Y.-F.; Zhao, H.-W.; Wang, H.; Wei, J.-B.; Shi, Z.-J. Angew. Chem., Int. Ed. 2015, 54, 13686.
[27]
(a) Gandeepan, P.; Ackermann, L. Chem 2018, 4, 199.
[27]
(b) Higham, J. I.; Bull, J. A. Org. Biomol. Chem. 2020, 18, 7291.
[27]
(c) Goswami, N.; Bhattacharya, T.; Maiti, D. Nat. Rev. Chem. 2021, 5, 646.
[28]
Yang, K.; Li, Q.; Liu, Y.; Li, G.; Ge, H. J. Am. Chem. Soc. 2016, 138, 12775.
[29]
Li, Y.-H.; Ouyang, Y.; Chekshin, N.; Yu, J.-Q. J. Am. Chem. Soc. 2022, 144, 4727.
[30]
St John-Campbell, S.; White, A. J. P.; Bull, J. A. Org. Lett. 2020, 22, 1807.
[31]
Hong, K.; Park, H.; Yu, J.-Q. ACS Catal. 2017, 7, 6938.
[32]
Pan, L.; Yang, K.; Li, G.; Ge, H. Chem. Commun. 2018, 54, 2759.
[33]
Wang, J.; Dong, C.; Wu, L.; Xu, M.; Lin, J.; Wei, K. Adv. Synth. Catal. 2018, 360 3709.
[34]
(a) Dong, C.; Wu, L.; Yao, J.; Wei, K. Org. Lett. 2019, 21, 2085.
[34]
(b) Cheng, Y.; Zheng, J.; Tian, C.; He, Y.; Zhang, C.; Tan, Q.; An, G.; Li, G. Asian J. Org. Chem. 2019, 8, 526.
[35]
Xu, Y.; Young, M. C.; Wang, C.; Magness, D. M.; Dong, G. Angew. Chem., Int. Ed. 2016, 55, 9084.
[36]
Wu, Y.; Chen, Y.-Q.; Liu, T.; Eastgate, M. D.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 14554.
[37]
Yada, A.; Liao, W.; Sato, Y.; Murakami, M. Angew. Chem., Int. Ed. 2017, 56, 1073.
[38]
Shabashov, D.; Daugulis, O. Org. Lett. 2005, 7, 3657.
[39]
Le, K. K. A.; Nguyen, H.; Daugulis, O. J. Am. Chem. Soc. 2019, 141, 37, 14728.
[40]
Wasa, M.; Chan, K. S. L.; Zhang, X.-G.; He, J.; Miura, M.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 18570.
[41]
Wu, K.; Lam, N.; Strassfeld, D. A.; Fan, Z.; Qiao, J. X.; Liu, T.; Stamos, D.; Yu, J.-Q. Angew. Chem., Int. Ed. 2024, 63, e202400509.
[42]
(a) Chen, G.; Gong, W.; Zhuang, Z.; Andr?, M. S.; Chen, Y.-Q.; Hong, X.; Yang, Y.-F.; Liu, T.; Houk, K. N.; Yu, J.-Q. Science 2016, 353, 1023.
[42]
(b) Hill, D. E.; Pei, Q.-l.; Zhang, E.-x.; Gage, J. R.; Yu, J.-Q.; Blackmond, D. G. ACS Catal. 2018, 8, 1528.
[43]
Shang, M.; Feu, K. S.; Vantourout, J. C.; Barton, L. M.; Osswald, H. L.; Kato, N.; Gagaring, K.; McNamara, C. W.; Chen, G.; Hu, L.; Ni, S.; Fernández-Canelas, P.; Chen, M.; Merchant, R. R.; Qin, T.; Schreiber, S. L.; Melillo, B.; Yu, J.-Q.; Baran, P. S. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 8721.
[44]
Andr?, M. S.; Schifferer, L.; Pollok, C. H.; Merten, C.; Goo?en, L. J.; Yu, J.-Q. Chem. Eur. J. 2019, 25, 8503.
[45]
Topczewski, J. J.; Cabrera, P. J.; Saper, N. I.; Sanford, M. S. Nature 2016, 531, 220.
[46]
Cabrera, P. J.; Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2018, 140, 5599.
[47]
Kapoor, M.; Liu, D.; Young, M. C. J. Am. Chem. Soc. 2018, 140, 6818.
[48]
(a) Font, M.; Quibell, J. M.; Perry, G. J. P.; Larrosa, I. Chem. Commun. 2017, 53, 5584.
[48]
(b) He, C.; Whitehurst, W. G.; Gaunt, M. J. Chem 2019, 5, 1031.
[48]
(c) He, C.; Zu, B.; Guo, Y.; Ke, J. Synthesis 2021, 53, 2029.
[48]
(d) Das, J.; Mal, D. K.; Maji, S.; Maiti, D. ACS Catal. 2021, 11, 4205.
[49]
Hu, L.; Meng, G.; Yu, J.-Q. J. Am. Chem. Soc. 2022, 144, 20550.
[50]
Yang, J.-M.; Lin, Y.-K.; Sheng, T.; Hu, L.; Cai, X.-P.; Yu, J.-Q. Science 2023, 380, 639.
[51]
Kang, G.; Strassfeld, D. A.; Sheng, T.; Chen, C.-Y.; Yu, J.-Q. Nature 2023, 618, 519.
[52]
Zhang, T.; Zhang, Z.-Y.; Kang, G.; Sheng, T.; Yan, J.-L.; Yang, Y.-B.; Ouyang, Y.; Yu, J.-Q. Science 2024, 384, 793.
[53]
Hoque, M. E.; Yu, J.-Q. Angew. Chem., Int. Ed. 2023, 62, e202312331.
[54]
Strassfeld, D. A.; Chen, C.-Y.; Park, H. S.; Phan, D. Q.; Yu, J.-Q. Nature 2023, 622, 80.
[55]
Chen, K.; Hu, F.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci. 2013, 4, 3906.
[56]
Zhang, S.-Y.; He, G.; Nack, W. A.; Zhao, Y.; Li, Q.; Chen, G. J. Am. Chem. Soc. 2013, 135, 2124.
[57]
Liu, Y.; Yang, K.; Ge, H. Chem. Sci. 2016, 7, 2804.
[58]
Ding, Y.; Han, Y.-Q.; Wu, L.-S.; Zhou, T.; Yao, Q.-J.; Feng, Y.-L.; Li, Y.; Kong, K.-X.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 14060.
[59]
Liu, Y.; Wang, Y.; Dai, W.; Huang, W.; Li, Y.; Liu, H. Angew. Chem., Int. Ed. 2020, 59, 3491.
[60]
Wu, J.; Kaplaneris, N.; Ni, S.; Kaltenh?user, F.; Ackermann, L. Chem. Sci. 2020, 11, 6521.
[61]
Gadde, K.; Bheemireddy, N. R.; Heitk?mper, J.; Nova, A.; Maes, B. U. W. ACS Catal. 2024, 14, 1157.
[62]
Ano, Y.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 12984.
[63]
Landge, V. G.; Parveen, A.; Nandakumar, A.; Balaraman, E. Chem. Commun. 2018, 54, 7483.
[64]
Han, Y.-Q.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. J. Am. Chem. Soc. 2019, 141, 4558.
[65]
Cabrera-Pardo, J. R.; Trowbridge, A.; Nappi, M.; Ozaki, K.; Gaunt, M. J. Angew. Chem., Int. Ed. 2017, 56, 11958.
[66]
Hogg, K. F.; Trowbridge, A.; Alvarez-Pérez, A.; Gaunt, M. J. Chem. Sci. 2017, 8, 8198.
[67]
Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542.
[68]
Ren, Z.; Mo, F.; Dong, G. J. Am. Chem. Soc. 2012, 134, 16991.
[69]
Chen, K.; Zhang, S.-Q.; Jiang, H.-Z.; Xu, J.-W.; Shi, B.-F. Chem. Eur. J. 2015, 21, 3264.
[70]
Shan, G.; Yang, X.; Zong, Y.; Rao, Y. Angew. Chem., Int. Ed. 2013, 52, 13606.
[71]
Chen, F.-J.; Zhao, S.; Hu, F.; Chen, K.; Zhang, Q.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci. 2013, 4, 4187.
[72]
Bai, H.-Y.; Ma, Z.-G.; Yi, M.; Lin, J.-B.; Zhang, S.-Y. ACS Catal. 2017, 7, 2042.
[73]
Zhu, R.-Y.; Tanaka, K.; Li, G.-C.; He, J.; Fu, H.-Y.; Li, S.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 7067.
[74]
Zhang, Q.; Yin, X.-S.; Chen, K.; Zhang, S.-Q.; Shi, B.-F. J. Am. Chem. Soc. 2015, 137, 8219.
[75]
Mao, Y.-J.; Lou, S.-J.; Hao, H.-Y.; Xu, D.-Q. Angew. Chem., Int. Ed. 2018, 57, 14085.
[76]
Chen, Y.-Q.; Singh, S.; Wu, Y.; Wang, Z.; Hao, W.; Verma, P.; Qiao, J. X.; Sunoj, R. B.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 9966.
[77]
He, J.; Shao, Q.; Wu, Q.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 3344.
[78]
Kanyiva, K. S.; Kuninobu, Y.; Kanai, M. Org. Lett. 2014, 16, 1968.
[79]
Pan, J.-L.; Li, Q.-Z.; Zhang, T.-Y.; Hou, S.-H.; Kang, J.-C.; Zhang, S.-Y. Chem. Commun. 2016, 52, 13151.
[80]
Vyhivskyi, O.; Kudashev, A.; Miyakoshi, T.; Baudoin, O. Chem. Eur. J. 2021, 27, 1231;
[81]
Zhang, Z.; Wei, F.; Wang, X.; Zhang, Y.. Org. Lett. 2024, 26, 3586.
[82]
Uttry, A.; Mal, S.; van Gemmeren, M. J. Am. Chem. Soc. 2021, 143, 10895.
[83]
Watanabe, A.; Hama, K.; Watanabe, K.; Fujiwara, Y.; Yokoyama, K.; Murata, S.; Takita, R. Angew. Chem., Int. Ed. 2022, 61, e202202779.
[84]
Wang, X.; Sun, Z.; Li, T.; Perveen, S.; Li, P. Green Chem. 2024, 26, 3767.
文章导航

/