可再生能源驱动的CO2基环状碳酸酯合成研究进展
收稿日期: 2024-06-28
修回日期: 2024-07-24
网络出版日期: 2024-09-02
基金资助
国家重点研发计划(2022YFB4101800); 国家自然科学基金(22361132527)
Progress on Renewable Energy-Driven Synthesis of Cyclic Carbonates from CO2
Received date: 2024-06-28
Revised date: 2024-07-24
Online published: 2024-09-02
Supported by
National Key Research and Development Program of China(2022YFB4101800); National Natural Science Foundation of China(22361132527)
环状碳酸酯是重要的化工产品, 在电池电解液、化妆品、油漆等领域具有广泛应用, 同时还是有机合成的绿色溶剂和反应原料. 环状碳酸酯是工业规模CO2转化的重要产品, 主要通过环氧化物与CO2的环加成反应进行制备. 在传统的热催化反应中, 由于环氧化物活化开环具有较高的能垒, 因而一般需要较高的反应温度. 近年来, 新材料的发展推动了环加成反应催化剂的创新, 新的催化模式不断出现, 尤其是光驱动和电驱动的环加成反应实现了温和条件下环状碳酸酯的制备. 此外, 电驱动的烯烃或邻二醇与CO2合成环状碳酸酯也取得了初步的研究成果. 总结了光/电驱动的CO2合成环状碳酸酯的反应, 旨在通过对材料设计和催化机理的介绍, 为新型反应路径和催化材料的设计提供新思路.
许立锋 , 武安国 , 于芳羽 , 李红茹 , 何良年 . 可再生能源驱动的CO2基环状碳酸酯合成研究进展[J]. 有机化学, 2024 , 44(10) : 3091 -3105 . DOI: 10.6023/cjoc202406044
The cyclic carbonate is a crucial chemical product extensively employed in battery electrolytes, cosmetics, paints, and various other industries. Additionally, it serves as an eco-friendly solvent and reaction precursor for organic synthesis. As the commercial products via CO2 conversion, cyclic carbonates were mainly prepared through the cycloaddition reaction of epoxides with CO2. By far, the production of cyclic carbonates still relies on the thermal catalytic cycloaddition reactions, in which high temperature is always required due to the high energy barrier for the ring-opening of epoxides and CO2 activation. In recent years, novel catalytic pathways have been proposed accompanied with the emergence of new catalytic materials. Especially the light/electricity-driven cycloaddition reactions render the synthesis of cyclic carbonates under room tem- perature. In addition, achievements have also been made on electron-induced cyclic carbonate synthesis from olefins or vicinal diols and CO2. The present review provides a comprehensive overview of the photocatalytic/electrocatalytic synthesis of cyclic carbonates from CO2, aiming to offer novel insights into the design of innovative reaction pathways and catalytic materials by incorporating material engineering and catalytic mechanisms.
| [1] | (a) Yu, B.; He, L. N. ChemSusChem 2014, 8, 52. |
| [1] | (b) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. |
| [1] | (c) Qiu, L. Q.; Yao, X. Y.; Zhang, Y. K.; Li, H. R.; He, L. N. J. Org. Chem. 2023, 88, 4942. |
| [1] | (d) Qiu, L. Q.; Li, H. R.; He, L. N. Acc. Chem. Res. 2023, 56, 2225. |
| [2] | Lang, X. D.; He, L. N. Chem. Rec. 2016, 16, 1337. |
| [3] | Prajapati, P. K.; Kumar, A.; Jain, S. L. ACS Sustainable Chem. Eng. 2018, 6, 7799. |
| [4] | Liu, C.; Niu, H.; Wang, D.; Gao, C.; Said, A.; Liu, Y.; Wang, G.; Tung, C.-H.; Wang, Y. ACS Catal. 2022, 12, 8202. |
| [5] | (a) Ahmed, S. H.; Bakiro, M.; Alzamly, A. Materialia 2020, 12, 100781. |
| [5] | (b) Bakiro, M.; Hussein Ahmed, S.; Alzamly, A. ACS Sustainable Chem. Eng. 2020, 8, 12072. |
| [6] | Cheng, R.; Wang, A.; Sang, S.; Liang, H.; Liu, S.; Tsiakaras, P. Chem. Eng. J. 2023, 466, 142982. |
| [7] | Gong, X.; Zhang, Y.; Xu, Y.; Zhai, G.; Liu, X.; Bao, X.; Wang, Z.; Liu, Y.; Wang, P.; Cheng, H.; Fan, Y.; Dai, Y.; Zheng, Z.; Huang, B. ACS Appl. Mater. Interfaces 2022, 14, 51029. |
| [8] | Jiang, H.; Zang, C.; Guo, L.; Gao, X. Sci. Total Environ. 2022, 838, 155920. |
| [9] | Kumar, A.; Samanta, S.; Srivastava, R. ACS Appl. Nano Mater. 2021, 4, 6805. |
| [10] | (a) Hussein Ahmed, S.; Bakiro, M.; Alzamly, A. Molecules 2021, 26, 1693. |
| [10] | (b) Bakiro, M.; Ahmed, S. H.; Alzamly, A. J. Environ. Chem. Eng. 2020, 8, 104461. |
| [11] | Zhai, G.; Liu, Y.; Lei, L.; Wang, J.; Wang, Z.; Zheng, Z.; Wang, P.; Cheng, H.; Dai, Y.; Huang, B. ACS Catal. 2021, 11, 1988. |
| [12] | Zhai, G.; Liu, Y.; Mao, Y.; Zhang, H.; Lin, L.; Li, Y.; Wang, Z.; Cheng, H.; Wang, P.; Zheng, Z.; Dai, Y.; Huang, B. Appl. Catal., B 2022, 301, 120793. |
| [13] | Das, R.; Manna, S. S.; Pathak, B.; Nagaraja, C. M. ACS Appl. Mater. Interfaces 2022, 14, 33285. |
| [14] | Zhang, H.; Si, S.; Zhai, G.; Li, Y.; Liu, Y.; Cheng, H.; Wang, Z.; Wang, P.; Zheng, Z.; Dai, Y.; Liu, T. X.; Huang, B. Appl. Catal., B 2023, 337, 122909. |
| [15] | Shi, Q.; Chen, M.-H.; Xiong, J.; Li, T.; Feng, Y.-Q.; Zhang, B. Chem. Eng. J. 2024, 481, 148301. |
| [16] | Das, A.; Mondal, R. K.; Chakrabortty, P.; Riyajuddin, S.; Chowdhury, A. H.; Ghosh, S.; Khan, A.; Ghosh, K.; Islam, S. M. Mol. Catal. 2021, 499, 111253. |
| [17] | Li, X.; Niu, X.; Fu, P.; Song, Y.; Zhang, E.; Dang, Y.; Yan, J.; Feng, G.; Lei, S.; Hu, W. Appl. Catal., B 2024, 350, 123943. |
| [18] | Saini, S.; Khan, S. R.; Gour, N. K.; Chandra Deka, R.; Jain, S. L. Green Chem. 2022, 24, 3644. |
| [19] | Yang, Q.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Angew. Chem. Int. Ed. 2019, 58, 3511. |
| [20] | Gong, L.; Sun, J.; Liu, Y.; Yang, G. J. Mater. Chem. A 2021, 9, 21689. |
| [21] | Duan, C.; Ding, M.; Feng, Y.; Cao, M.; Yao, J. Sep. Purif. Technol. 2022, 285, 120359. |
| [22] | Liu, Y.; Chen, Y.; Liu, Y.; Chen, Z.; Yang, H.; Yue, Z.; Fang, Q.; Zhi, Y.; Shan, S. J. Catal. 2022, 407, 65. |
| [23] | Dai, W.; Zou, M.; Long, J.; Li, B.; Zhang, S.; Yang, L.; Wang, D.; Mao, P.; Luo, S.; Luo, X. Appl. Surf. Sci. 2021, 540, 148311. |
| [24] | Rong, W.; Ding, M.; Ma, P.; Kong, S.; Yao, J. J. Ind. Eng. Chem. 2024, 129, 682. |
| [25] | Tang, F.; Wang, L.; Ma, L.; Fang, Y.; Huang, J.; Liu, Y.-N. J. CO2 Util. 2021, 45, 101431. |
| [26] | Yang, Q.; Peng, H.; Zhang, Q.; Qian, X.; Chen, X.; Tang, X.; Dai, S.; Zhao, J.; Jiang, K.; Yang, Q.; Sun, J.; Zhang, L.; Zhang, N.; Gao, H.; Lu, Z.; Chen, L. Adv. Mater. 2021, 33, 2103186 |
| [27] | Wang, Y.; Liu, H.; Shi, Q.; Miao, Z.; Duan, H.; Wang, Y.; Rong, H.; Zhang, J. Angew. Chem. Int. Ed. 2024, e202404911. |
| [28] | Paliwal, K. S.; Sarkar, D.; Mitra, A.; Mahalingam, V. ChemPlus-Chem 2023, 88, e202300448. |
| [29] | Wang, T.; Chen, F.; Jiang, L.; Li, J.; Chen, K.; Gao, J. Inorg. Chem. 2024, 63, 4224. |
| [30] | Guo, Q.; Xia, S.-G.; Li, X.-B.; Wang, Y.; Liang, F.; Lin, Z.-S.; Tung, C.-H.; Wu, L.-Z. Chem. Commun. 2020, 56, 7849. |
| [31] | Yang, Z.; Xie, Y.; Feng, Y.; Yao, J. J. Environ. Chem. Eng. 2024, 12, 112310. |
| [32] | (a) Chen, H.; Fan, L.; Zhang, X. ACS Appl. Mater. Interfaces 2020, 12, 54884. |
| [32] | (b) Yin, M.; Wang, L.; Tang, S. ACS Catal. 2023, 13, 13021. |
| [32] | (c) Ding, M.; Jiang, H.-L. ACS Catal. 2018, 8, 3194. |
| [33] | Sharma, N.; Dhankhar, S. S.; Nagaraja, C. M. Microporous Mesoporous Mater. 2019, 280, 372. |
| [34] | Zhou, X.; Zhang, H.; Cheng, H.; Wang, Z.; Wang, P.; Zheng, Z.; Dai, Y.; Xing, D.; Liu, Y.; Huang, B. J. Colloid Interface Sci. 2024, 658, 805. |
| [35] | Fang, Z.; Deng, Z.; Wan, X.; Li, Z.; Ma, X.; Hussain, S.; Ye, Z.; Peng, X. ppl. Catal., B 2021, 296, 120329. |
| [36] | Duan, C.; Xie, Y.; Ding, M.; Feng, Y.; Yao, J. J. CO2 Util. 2022, 64, 102158. |
| [37] | Feng, Y.; Cao, Y.; Zhu, J.; Han, H.; Liu, Y.; Li, X.; Zhao, S.; Yang, J.; Fang, Z.; He, W.; Yang, Z.; Guo, K. J. Cleaner Prod. 2024, 440, 141002. |
| [38] | Ding, L.-G.; Yao, B.-J.; Wu, W.-X.; Yu, Z.-G.; Wang, X.-Y.; Kan, J.-L.; Dong, Y.-B. Inorg. Chem. 2021, 60, 12591. |
| [39] | Zhang, L.; Tu, X.; Chen, Y.; Han, W.; Chen, L.; Sun, C.; Zhu, S.; Song, Y.; Zheng, H. Mol. Catal. 2023, 538, 112971. |
| [40] | (a) Wu, Y.; Yu, X.-F.; Du, Y.; Xia, L.; Guo, Q.; Zhang, K.; Zhang, W.; Liu, S.; Peng, Y.; Li, Z.; Yang, X. Appl. Catal., B 2023, 331, 122732. |
| [40] | (b) Zhang, W.; Li, Z.; Yu, X.-F.; Zhang, K.; Liu, S.; Du, Y.; Guo, Q.; Zhang, L.; Ding, X.; Tang, H.; Peng, Y.; Yang, X. Inorg. Chem. 2024, 63, 2954. |
| [41] | Tascedda, P.; Weidmann, M.; Dinjus, E.; Duach, E. Appl. Organomet. Chem. 2001, 15, 141. |
| [42] | Yang, H.; Gu, Y.; Deng, Y.; Shi, F. Chem. Commun. 2002, 274. |
| [43] | Wu, L.-X; Yang, H.-P; Wang, H.; Lu, J.-X. RSC Adv. 2015, 5, 23189. |
| [44] | Zhang, J.-J.; Shan, S.-L.; Shi, Y.; Hou, Y.; Wang, H.; Lu, J.-X. J. Electroanal. Chem. 2021, 882, 114962. |
| [45] | Wu, L.-X.; Yang, H.-P.; Guan, Y.-B.; Yang, M.-P.; Wang, H.; Lu, J.-X. Int. J. Electrochem. Sci. 2017, 12, 8963. |
| [46] | Xiao, Y.; Chen, B.-L.; Yang, H.-P.; Wang, H.; Lu, J.-X. Electrochem. Commun. 2014, 43, 71. |
| [47] | Khoshro, H.; Zare, H. R.; Namazian, M.; Jafari, A. A.; Gorji, A. Electrochim. Acta 2013, 113, 263. |
| [48] | Li, W.-Z; Qi, K.; Lu, X.-Y; Qi, Y.; Zhang, J.-L; Zhang, B.-S; Qi, W. Chem.-Eur. J. 2022, 28, e202200622 |
| [49] | Dai, X.-Y; Qi, K.; Liu, C.-W; Lu, X.-Y; Qi, W. Carbon 2023, 202, 51. |
| [50] | Hu, Y. -L.; Liu, X. -B.; Rong, Q. Green Chem. Lett. Rev. 2023, 16, 2163192. |
| [51] | Gao, X.-F; Yuan, G.-Q; Chen, H.-J; Jiang, H.-F; Li, Y.-W; Qi, C-R. Electrochem. Commun. 2013, 34, 242. |
| [52] | Wang, H; Wu, L.-X; Lan, Y.-C; Zhao, J.-Q; Lu, J.-X. Int. J. Electrochem. Sci. 2011, 6, 4218. |
| [53] | Wu, L. -X; Wang, H; Tu, J -Z.-Y; Ding, B. -B; Xiao, Y; Lu, J.-X. Int. J. Electrochem. Sci. 2012, 7, 11540. |
| [54] | Wang, H.; Wu, L.-X.; Zhao, J.-Q.; Li, R.-N.; Zhang, A.-J.; Kajiura, H.; Li, Y.-M.; Lu, J.-X. Greenhouse Gas. Sci. Technol. 2012, 2, 59. |
| [55] | (a) Liu, J.; Yang, G.; Liu, Y.; Wu, D.; Hu, X.; Zhang, Z. Green Chem. 2019, 21, 3834. |
| [55] | (b) Iglesias, D.; Tinajero, C.; Marchetti, S.; Roppolo, I.; Zanatta, M.; Sans, V. Green Chem. 2023, 25, 9934. |
| [56] | (a) Chung, M.; Maalouf, J. H.; Adams, J. S.; Jiang, C.; Román-Leshkov, Y.; Manthiram, K. Science 2024, 383, 49. |
| [56] | (b) Leow, W. R.; Lum, Y.; Ozden, A.; Wang, Y.; Nam, D.-H.; Chen, B.; Wicks, J.; Zhuang, T.-T.; Li, F.; Sinton, D.; Sargent, E. H. Science 2020, 368, 1228. |
| [56] | (c) Tao, Y.; Huang, C.; Lu, Q. Nat. Catal. 2023, 6, 1107. |
| [56] | (d) Yang, Y.; Yuan, X.; Wang, Q.; Wan, S.; Lin, C.; Lu, S.; Zhong, Q.; Zhang, K. Angew. Chem. Int. Ed. 2024, 63, e202314383. |
| [56] | (e) Seitz, A. K.; Kohlpaintner, P. J.; van Lingen, T.; Dyga, M.; Sprang, F.; Zirbes, M.; Waldvogel, S. R.; Goo?en, L. J. Angew. Chem. Int. Ed. 2022, 61, e202117563. |
| [57] | Zhang, J.-J.; Li, S.-M.; Shi, Y.; Hu, Q.-L.; Wang, H.; Lu, J.-X. New J. Chem. 2020, 44, 11817. |
/
| 〈 |
|
〉 |