异相催化固定二氧化碳合成羰基衍生物的研究进展
收稿日期: 2024-05-25
修回日期: 2024-08-21
网络出版日期: 2024-09-10
基金资助
广西科技基地及人才项目(高层次创新人才及团队培养)(Guike AD23026094); 国家自然科学基金(22161008)
Heterogeneous Catalytic Fixation of Carbon Dioxide for Synthesis of Carbonyl Derivatives
Received date: 2024-05-25
Revised date: 2024-08-21
Online published: 2024-09-10
Supported by
Guangxi Science and Technology Base and Talent Project (High Level Innovative Talents and Team Training)(Guike AD23026094); National Natural Science Foundation of China(22161008)
张誉元 , 杨昌杰 , 唐海涛 , 潘英明 . 异相催化固定二氧化碳合成羰基衍生物的研究进展[J]. 有机化学, 2024 , 44(10) : 3077 -3090 . DOI: 10.6023/cjoc202405033
As an effective way to utilize CO2 resources, multiphase catalytic carbon fixation is of great significance to promote carbon neutrality and carbon peak. The exploration of this reaction is of guiding significance to the establishment of other catalytic systems. This paper reviews the recent progress in the synthesis of a series of carbon dioxide fixed carbonyl derivatives by heterogeneous catalysis in the fields of photocatalysis, electrocatalysis, thermal catalysis, and photothermal catalysis. The synthesis of carbonyl derivatives by different heterogeneous catalysis CO2, including organic carbonates, carbamates and carboxylic acids, is introduced. The reaction mechanism of these reactions is discussed. This provides a reference for the design and realization of the polyphase catalytic fixed CO2 reaction.
| [1] | Liu, L.-C.; Corma, A. Chem. Rev. 2023, 123, 4855. |
| [2] | Huang, W.-Y.; Wang, G.-Q.; Li, W.-H.; Li, T.-T.; Ji, G.-J.; Ren, S.-C.; Jiang, M.; Yan, L.; Tang, H.-T.; Pan, Y.-M.; Ding, Y.-J. Chem 2020, 6, 2300. |
| [3] | Jia, J.-S.; Cao, Y.; Wu, T.-X.; Tao, Y.; Pan, Y.-M.; Huang, F.-P.; Tang, H.-T. ACS Catal. 2021, 11, 6944. |
| [4] | Kisch, H. Angew. Chem., Int. Ed. 2010, 49, 9588. |
| [5] | Jaramillo, T. F.; J?rgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100. |
| [6] | Wang, X.-S.; Yang, X.; Chen, C.-H.; Li, H.-F.; Huang, Y.-B.; Cao, R. Acta Chim. Sinica 2022, 80, 22. (in Chinese) |
| [6] | (王旭生, 杨胥, 陈春辉, 李红芳, 黄远标, 曹荣, 化学学报, 2022, 80, 22.) |
| [7] | Xiong, T.-K.; Zhou, X.-Q.; Zhang, M.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Green Chem. 2021, 23, 4328. |
| [8] | Xie, Y.-Y.; Pan, Y.-M. Green Chem. 2024, DOI: 10.1039/D4GC02829E. |
| [9] | Pan, Y.-Z.; Qi, X.; Zhu, J.-X.; Wang, Y.-C.; Liang, Y.; Wang, H.-S; Tang, H.-T.; Pan, Y.-M. Org. Lett. 2022, 24, 8239. |
| [10] | Sun, G.-Q.; Yu, P.; Zhang, W.; Zhang, W.; Wang, Y.; Liao, L.-L.; Zhang, Z.; Li, L.; Lu, Z.-P.; Yu, D.-G.; Lin, S. Nature 2023, 615, 67. |
| [11] | Ertl, G. Angew. Chem., Int. Ed. 2008, 47, 3524. |
| [12] | Centi, G.; Perathoner, S. Catal. Today 2009, 148, 191. |
| [13] | Aresta, M.; Dibenedetto, A.; Angelini, A. J. CO2 Util. 2014, 3-4, 65. |
| [14] | Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933. |
| [15] | Peters, M.; K?hler, B.; Kuckshinrichs, W.; Leitner, W.; Markewitz, P.; Müller, T. E. ChemSusChem 2011, 4, 1216. |
| [16] | Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Energy Environ. Sci. 2013, 6, 3112. |
| [17] | Qiao, J.-L.; Liu, Y.-Y.; Hong, F.; Zhang, J.-J. Chem. Soc. Rev. 2014, 43, 631. |
| [18] | Tao, Z.; Rooney, C. L.; Liang, Y.; Wang, H. J. Am. Chem. Soc. 2021, 143, 19630. |
| [19] | Fu, X.; Zhang, J.; Kang, Y. React. Chem. Eng. 2021, 6, 612. |
| [20] | Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 14, 1695. |
| [21] | Isse, A. A.; Durante, C.; Gennaro, A. Electrochem. Commun. 2011, 13, 810. |
| [22] | Zhang, Y.; Yu, S.; Luo, P.; Xu, S.; Zhang, X.; Zhou, H.; Du, J.; Yang, J.; Xin, N.; Kong, Y.; Liu, J.; Chen, B.; Lu, J. R. Soc. Open Sci. 2018, 5, 180897. |
| [23] | Cao, Y.-M.; Li, D.-Y.; Ding, C.-M.; Ye, S.; Zhang, X.-W.; Chi, H.-B.; Liu, L.-Q.; Liu, Y.; Xiao, J.-P.; Li, C. ACS Catal. 2023, 13, 11902. |
| [24] | Peng, X.; Karakalos, S. G.; Mustain, W. E. ACS Appl. Mater. Interfaces 2018, 10, 1734. |
| [25] | Li, Z.-Y.; Yang, Y.-S.; Wei, M. Acta Chim. Sinica 2022, 80, 199. (in Chinese) |
| [25] | (李泽洋, 杨宇森, 卫敏, 化学学报, 2022, 80, 199.) |
| [26] | Jiang, G.-M.; Su, Y.-P.; Li, H.-X.; Chen, Y.-F.; Li, S.; Bu, Y.-B.; Zhang, Z.-T. Appl. Surf. Sci. 2021, 549, 149277. |
| [27] | Rao, R.-C.; Shao, F.-L.; Dong, X.-Z.; Dong, H.-Z.; Fang, S.; Sun, H.; Ling, Q. Appl. Surf. Sci. 2020, 513, 145771. |
| [28] | Naqvi, S. T. R.; Shirinfar, B.; Majeed, S.; Najam-Ul-Haq, M.; Hussain, D.; Iqbal, T.; Ahmed, N. Analyst 2018, 143, 5610. |
| [29] | Guan, A.; Quan, Y.; Chen, Y.; Liu, Z.; Zhang, J.; Kan, M.; Zhang, Q.; Huang, H.; Qian, L.; Zhang, L.; Zheng, G. Chin. J. Catal. 2022, 43, 3134. |
| [30] | Jiang, Y.-L.; Li, G.-C.; Chen, Q.-S.; Xu, Z.-N.; Lin, S.-S.; Guo, G.-C. Acta Chim. Sinica 2022, 80, 703. (in Chinese) |
| [30] | (蒋银龙, 李国超, 陈青松, 徐忠宁, 林姗姗, 郭国聪, 化学学报, 2022, 80, 7037.) |
| [31] | Ren, B.; Wen, G.; Gao, R.; Luo, D.; Zhang, Z.; Qiu, W.; Ma, Q.; Wang, X.; Cui, Y.; Ricardez-Sandoval, L.; Yu, A.; Chen, Z. Nat. Commun. 2022, 13, 2486. |
| [32] | álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117, 9804. |
| [33] | Jiang, Y.-L.; Shan, J.-Q.; Wang, P.-T.; Huang, L.-S.; Zheng, Y.; Qiao, S.-Z. ACS Catal. 2023, 13, 3101. |
| [34] | Hao, Y.; Yan, X.; Liu, X.; Qin, S.; Zhu, Z.; Panchal, B.; Chang, T. J. CO2 Util. 2022, 56, 101867. |
| [35] | Guo, L.; Zhang, R.; Xiong, Y.; Chang, D.; Zhao, H.; Zhang, W.; Zheng, W.; Chen, J.; Wu, X. Molecules 2020, 25, 3627. |
| [36] | Dai, X.-Y.; Qi, K.; Liu, C. Carbon 2023, 202, 1. |
| [37] | Li, D.; Kassymova, M.; Cai, X.; Zang, S.; Jiang, H. Coord. Chem. Rev. 2020, 412, 213262. |
| [38] | Lu, Q.; Eid, K.; Li, W.; Abdullah, A. M.; Xu, G.; Varma, R. S. Green Chem. 2021, 23, 5394. |
| [39] | Li, L.; Dai, X.; Chen, D.-L.; Zeng, Y.; Hu, Y.; Lou, D. Angew. Chem., Int. Ed. 2022, 61, 202205839. |
| [40] | Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S.-I. Energy Environ. Sci. 2022, 15, 880. |
| [41] | Inoue, T.; Fujishima, A.; Konishi, S. Nature 1979, 277, 637. |
| [42] | Yuan, T.; Wu, Z.-W.; Zhai, S.-M.; Wang, R.; Wu, S.-T.; Cheng, J.-J.; Zheng, M.-F.; Wang, X.-C. Angew. Chem., Int. Ed. 2023, 62, e20230486. |
| [43] | Li, X.-J.; Niu, X.-X.; Fu, P.; Song, Y.-R. Appl. Catal. B 2024, 350, 123943. |
| [44] | Li, L.; Liu, W.-X.; Ying, H.-H.; He, X.; Shang, S.; Zhang, P.; Zhang, X.-D.; Liu, S.-H.; Wang, H.; Xie, Y. CCS Chem. 2024, DOI: 10.31635/ccschem.024.202404189. |
| [45] | Yuan, S.-B.; Bai, P.; He, Y.; Chen, J.-F.; Zhao, Y.-C.; Li, Y.-D. J. CO2 Util. 2023, 71, 102453. |
| [46] | Yang, Z.-Y.; Shen, C.-R.; Dong, K.-W. Chin. J. Chem. 2022, 40, 2734. |
| [47] | Wei, R.-J.; Xie, M.; Xia, R.-Q.; Chen, J.; Hu, H.-J.; Ning, G.-H.; Li, D. J. Am. Chem. Soc. 2023, 145, 22720. |
| [48] | Shen, Y.-J.; Zheng, Q.-S.; Chen, Z.-N.; Wen, D.-H.; James, H. C.; Xu, X.; Tu, T. Angew. Chem., Int. Ed. 2021, 60, 4125. |
| [49] | Xu, J.; Xu, H.; Dong, A.-Q.; Zhang, H. Adv. Mater. 2022, 34, 2206991. |
| [50] | Zhou, X.-Q.; Tang, H.-T.; Cui, F.-H.; Liang, Y.; Li, S.-H.; Pan, Y.-M. Green Chem. 2023, 25, 5024. |
| [51] | Xiong, T.-K.; Xia, Q.; Zhou, X.-Q.; Li, S.-H.; Cui, F.-H.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Adv. Synth. Catal. 2023, 365, 2183. |
| [52] | Pan, Y.-Z.; Xia, Q.; Zhu, J.-X.; Wang, Y.-C.; Wang, H.-S.; Tang, H.-T.; Pan, Y.-M. Org. Lett. 2022, 24, 8239. |
| [53] | Jiao, Z.-H.; Zhao, X.-Y.; Zhao, J. Acta Phys.-Chim. Sin. 2023, 39, 2301018. |
| [54] | Chen, P.-B.; Tang, X.-Y.; Meng, X.-J.; Tang, H.-T.; Liang, Y.; Pan, Y.-M. Green Synth. Catal. 2022, 3, 162. |
| [55] | Rao, Z.-X.; Chen, P.-B.; Xu, J.; Wang, Q.; Tang, H.-T.; Liang, Y.; Pan, Y.-M. ChemSusChem 2023, e202300170. |
| [56] | Chen, P.-B.; Yang, J.-W.; Rao, Z.-X.; Wang, Q.; Tang, H.-T.; Liang, Y.; Pan, Y.-M. J. Colloid Interf. Sci. 2023, 652, 866. |
| [57] | Liu, C.-Y.; Xiao, Y.-J.; Wan, W.-R.; Wei, Y. Appl. Catal. B 2023, 325, 122394. |
| [58] | Zhang, L.-P.; Tu, X.-W.; Chen, Y.-T.; Han, W.-H. Mol. Catal. 2023, 538, 112971. |
/
| 〈 |
|
〉 |