综述与进展

异相催化固定二氧化碳合成羰基衍生物的研究进展

  • 张誉元 ,
  • 杨昌杰 ,
  • 唐海涛 ,
  • 潘英明
展开
  • 广西师范大学化学与药学学院 省部共建药用资源化学与药物分子工程国家重点实验室 药用资源化学与药物分子工程教育部重点实验室 广西民族药省部共建协同创新中心 广西桂林 541004

收稿日期: 2024-05-25

  修回日期: 2024-08-21

  网络出版日期: 2024-09-10

基金资助

广西科技基地及人才项目(高层次创新人才及团队培养)(Guike AD23026094); 国家自然科学基金(22161008)

Heterogeneous Catalytic Fixation of Carbon Dioxide for Synthesis of Carbonyl Derivatives

  • Yuyuan Zhang ,
  • Changjie Yang ,
  • Haitao Tang ,
  • Yingming Pan
Expand
  • State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004

Received date: 2024-05-25

  Revised date: 2024-08-21

  Online published: 2024-09-10

Supported by

Guangxi Science and Technology Base and Talent Project (High Level Innovative Talents and Team Training)(Guike AD23026094); National Natural Science Foundation of China(22161008)

摘要

异相催化固定CO2的反应作为一种将CO2资源化利用的有效途径, 对促进“碳中和”与“碳达峰”具有重要意义, 并且该反应的探究对于其他催化体系的建立也具有指导意义. 重点介绍了使用异相催化技术在光催化、电催化、热催化、光热催化与光电催化中固定CO2合成系列羰基衍生物反应的最新研究进展, 主要介绍了不同异相催化剂催化CO2制备系列羰基衍生物的反应, 且采用不同催化方式进行了系统分类, 讨论了这些反应的反应机制, 为今后设计与实现异相催化固定CO2反应提供了参考.

本文引用格式

张誉元 , 杨昌杰 , 唐海涛 , 潘英明 . 异相催化固定二氧化碳合成羰基衍生物的研究进展[J]. 有机化学, 2024 , 44(10) : 3077 -3090 . DOI: 10.6023/cjoc202405033

Abstract

As an effective way to utilize CO2 resources, multiphase catalytic carbon fixation is of great significance to promote carbon neutrality and carbon peak. The exploration of this reaction is of guiding significance to the establishment of other catalytic systems. This paper reviews the recent progress in the synthesis of a series of carbon dioxide fixed carbonyl derivatives by heterogeneous catalysis in the fields of photocatalysis, electrocatalysis, thermal catalysis, and photothermal catalysis. The synthesis of carbonyl derivatives by different heterogeneous catalysis CO2, including organic carbonates, carbamates and carboxylic acids, is introduced. The reaction mechanism of these reactions is discussed. This provides a reference for the design and realization of the polyphase catalytic fixed CO2 reaction.

参考文献

[1]
Liu, L.-C.; Corma, A. Chem. Rev. 2023, 123, 4855.
[2]
Huang, W.-Y.; Wang, G.-Q.; Li, W.-H.; Li, T.-T.; Ji, G.-J.; Ren, S.-C.; Jiang, M.; Yan, L.; Tang, H.-T.; Pan, Y.-M.; Ding, Y.-J. Chem 2020, 6, 2300.
[3]
Jia, J.-S.; Cao, Y.; Wu, T.-X.; Tao, Y.; Pan, Y.-M.; Huang, F.-P.; Tang, H.-T. ACS Catal. 2021, 11, 6944.
[4]
Kisch, H. Angew. Chem., Int. Ed. 2010, 49, 9588.
[5]
Jaramillo, T. F.; J?rgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Science 2007, 317, 100.
[6]
Wang, X.-S.; Yang, X.; Chen, C.-H.; Li, H.-F.; Huang, Y.-B.; Cao, R. Acta Chim. Sinica 2022, 80, 22. (in Chinese)
[6]
(王旭生, 杨胥, 陈春辉, 李红芳, 黄远标, 曹荣, 化学学报, 2022, 80, 22.)
[7]
Xiong, T.-K.; Zhou, X.-Q.; Zhang, M.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Green Chem. 2021, 23, 4328.
[8]
Xie, Y.-Y.; Pan, Y.-M. Green Chem. 2024, DOI: 10.1039/D4GC02829E.
[9]
Pan, Y.-Z.; Qi, X.; Zhu, J.-X.; Wang, Y.-C.; Liang, Y.; Wang, H.-S; Tang, H.-T.; Pan, Y.-M. Org. Lett. 2022, 24, 8239.
[10]
Sun, G.-Q.; Yu, P.; Zhang, W.; Zhang, W.; Wang, Y.; Liao, L.-L.; Zhang, Z.; Li, L.; Lu, Z.-P.; Yu, D.-G.; Lin, S. Nature 2023, 615, 67.
[11]
Ertl, G. Angew. Chem., Int. Ed. 2008, 47, 3524.
[12]
Centi, G.; Perathoner, S. Catal. Today 2009, 148, 191.
[13]
Aresta, M.; Dibenedetto, A.; Angelini, A. J. CO2 Util. 2014, 3-4, 65.
[14]
Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
[15]
Peters, M.; K?hler, B.; Kuckshinrichs, W.; Leitner, W.; Markewitz, P.; Müller, T. E. ChemSusChem 2011, 4, 1216.
[16]
Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Energy Environ. Sci. 2013, 6, 3112.
[17]
Qiao, J.-L.; Liu, Y.-Y.; Hong, F.; Zhang, J.-J. Chem. Soc. Rev. 2014, 43, 631.
[18]
Tao, Z.; Rooney, C. L.; Liang, Y.; Wang, H. J. Am. Chem. Soc. 2021, 143, 19630.
[19]
Fu, X.; Zhang, J.; Kang, Y. React. Chem. Eng. 2021, 6, 612.
[20]
Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 14, 1695.
[21]
Isse, A. A.; Durante, C.; Gennaro, A. Electrochem. Commun. 2011, 13, 810.
[22]
Zhang, Y.; Yu, S.; Luo, P.; Xu, S.; Zhang, X.; Zhou, H.; Du, J.; Yang, J.; Xin, N.; Kong, Y.; Liu, J.; Chen, B.; Lu, J. R. Soc. Open Sci. 2018, 5, 180897.
[23]
Cao, Y.-M.; Li, D.-Y.; Ding, C.-M.; Ye, S.; Zhang, X.-W.; Chi, H.-B.; Liu, L.-Q.; Liu, Y.; Xiao, J.-P.; Li, C. ACS Catal. 2023, 13, 11902.
[24]
Peng, X.; Karakalos, S. G.; Mustain, W. E. ACS Appl. Mater. Interfaces 2018, 10, 1734.
[25]
Li, Z.-Y.; Yang, Y.-S.; Wei, M. Acta Chim. Sinica 2022, 80, 199. (in Chinese)
[25]
(李泽洋, 杨宇森, 卫敏, 化学学报, 2022, 80, 199.)
[26]
Jiang, G.-M.; Su, Y.-P.; Li, H.-X.; Chen, Y.-F.; Li, S.; Bu, Y.-B.; Zhang, Z.-T. Appl. Surf. Sci. 2021, 549, 149277.
[27]
Rao, R.-C.; Shao, F.-L.; Dong, X.-Z.; Dong, H.-Z.; Fang, S.; Sun, H.; Ling, Q. Appl. Surf. Sci. 2020, 513, 145771.
[28]
Naqvi, S. T. R.; Shirinfar, B.; Majeed, S.; Najam-Ul-Haq, M.; Hussain, D.; Iqbal, T.; Ahmed, N. Analyst 2018, 143, 5610.
[29]
Guan, A.; Quan, Y.; Chen, Y.; Liu, Z.; Zhang, J.; Kan, M.; Zhang, Q.; Huang, H.; Qian, L.; Zhang, L.; Zheng, G. Chin. J. Catal. 2022, 43, 3134.
[30]
Jiang, Y.-L.; Li, G.-C.; Chen, Q.-S.; Xu, Z.-N.; Lin, S.-S.; Guo, G.-C. Acta Chim. Sinica 2022, 80, 703. (in Chinese)
[30]
(蒋银龙, 李国超, 陈青松, 徐忠宁, 林姗姗, 郭国聪, 化学学报, 2022, 80, 7037.)
[31]
Ren, B.; Wen, G.; Gao, R.; Luo, D.; Zhang, Z.; Qiu, W.; Ma, Q.; Wang, X.; Cui, Y.; Ricardez-Sandoval, L.; Yu, A.; Chen, Z. Nat. Commun. 2022, 13, 2486.
[32]
álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117, 9804.
[33]
Jiang, Y.-L.; Shan, J.-Q.; Wang, P.-T.; Huang, L.-S.; Zheng, Y.; Qiao, S.-Z. ACS Catal. 2023, 13, 3101.
[34]
Hao, Y.; Yan, X.; Liu, X.; Qin, S.; Zhu, Z.; Panchal, B.; Chang, T. J. CO2 Util. 2022, 56, 101867.
[35]
Guo, L.; Zhang, R.; Xiong, Y.; Chang, D.; Zhao, H.; Zhang, W.; Zheng, W.; Chen, J.; Wu, X. Molecules 2020, 25, 3627.
[36]
Dai, X.-Y.; Qi, K.; Liu, C. Carbon 2023, 202, 1.
[37]
Li, D.; Kassymova, M.; Cai, X.; Zang, S.; Jiang, H. Coord. Chem. Rev. 2020, 412, 213262.
[38]
Lu, Q.; Eid, K.; Li, W.; Abdullah, A. M.; Xu, G.; Varma, R. S. Green Chem. 2021, 23, 5394.
[39]
Li, L.; Dai, X.; Chen, D.-L.; Zeng, Y.; Hu, Y.; Lou, D. Angew. Chem., Int. Ed. 2022, 61, 202205839.
[40]
Gong, E.; Ali, S.; Hiragond, C. B.; Kim, H. S.; Powar, N. S.; Kim, D.; Kim, H.; In, S.-I. Energy Environ. Sci. 2022, 15, 880.
[41]
Inoue, T.; Fujishima, A.; Konishi, S. Nature 1979, 277, 637.
[42]
Yuan, T.; Wu, Z.-W.; Zhai, S.-M.; Wang, R.; Wu, S.-T.; Cheng, J.-J.; Zheng, M.-F.; Wang, X.-C. Angew. Chem., Int. Ed. 2023, 62, e20230486.
[43]
Li, X.-J.; Niu, X.-X.; Fu, P.; Song, Y.-R. Appl. Catal. B 2024, 350, 123943.
[44]
Li, L.; Liu, W.-X.; Ying, H.-H.; He, X.; Shang, S.; Zhang, P.; Zhang, X.-D.; Liu, S.-H.; Wang, H.; Xie, Y. CCS Chem. 2024, DOI: 10.31635/ccschem.024.202404189.
[45]
Yuan, S.-B.; Bai, P.; He, Y.; Chen, J.-F.; Zhao, Y.-C.; Li, Y.-D. J. CO2 Util. 2023, 71, 102453.
[46]
Yang, Z.-Y.; Shen, C.-R.; Dong, K.-W. Chin. J. Chem. 2022, 40, 2734.
[47]
Wei, R.-J.; Xie, M.; Xia, R.-Q.; Chen, J.; Hu, H.-J.; Ning, G.-H.; Li, D. J. Am. Chem. Soc. 2023, 145, 22720.
[48]
Shen, Y.-J.; Zheng, Q.-S.; Chen, Z.-N.; Wen, D.-H.; James, H. C.; Xu, X.; Tu, T. Angew. Chem., Int. Ed. 2021, 60, 4125.
[49]
Xu, J.; Xu, H.; Dong, A.-Q.; Zhang, H. Adv. Mater. 2022, 34, 2206991.
[50]
Zhou, X.-Q.; Tang, H.-T.; Cui, F.-H.; Liang, Y.; Li, S.-H.; Pan, Y.-M. Green Chem. 2023, 25, 5024.
[51]
Xiong, T.-K.; Xia, Q.; Zhou, X.-Q.; Li, S.-H.; Cui, F.-H.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Adv. Synth. Catal. 2023, 365, 2183.
[52]
Pan, Y.-Z.; Xia, Q.; Zhu, J.-X.; Wang, Y.-C.; Wang, H.-S.; Tang, H.-T.; Pan, Y.-M. Org. Lett. 2022, 24, 8239.
[53]
Jiao, Z.-H.; Zhao, X.-Y.; Zhao, J. Acta Phys.-Chim. Sin. 2023, 39, 2301018.
[54]
Chen, P.-B.; Tang, X.-Y.; Meng, X.-J.; Tang, H.-T.; Liang, Y.; Pan, Y.-M. Green Synth. Catal. 2022, 3, 162.
[55]
Rao, Z.-X.; Chen, P.-B.; Xu, J.; Wang, Q.; Tang, H.-T.; Liang, Y.; Pan, Y.-M. ChemSusChem 2023, e202300170.
[56]
Chen, P.-B.; Yang, J.-W.; Rao, Z.-X.; Wang, Q.; Tang, H.-T.; Liang, Y.; Pan, Y.-M. J. Colloid Interf. Sci. 2023, 652, 866.
[57]
Liu, C.-Y.; Xiao, Y.-J.; Wan, W.-R.; Wei, Y. Appl. Catal. B 2023, 325, 122394.
[58]
Zhang, L.-P.; Tu, X.-W.; Chen, Y.-T.; Han, W.-H. Mol. Catal. 2023, 538, 112971.
文章导航

/