研究论文

二氧化碳基可再加工微交联热固性聚脲的合成

  • 黄文翰 ,
  • 姜山 ,
  • 李慧 ,
  • 赵凤玉 ,
  • 程海洋
展开
  • a 中国科学院长春应用化学研究所 电分析化学国家重点实验室 吉林省绿色化学与过程重点实验室 长春 130022
    b 中国科学技术大学应用化学与工程学院 合肥 230026
    c 上海大学材料科学与工程学院 上海 200444
共同第一作者

收稿日期: 2024-05-29

  修回日期: 2024-08-22

  网络出版日期: 2024-09-10

基金资助

国家自然科学基金(22172155)

Synthesis of CO2-Based Re-processable Slight Cross-Linked Polyurea Thermosets

  • Wenhan Huang ,
  • Shan Jiang ,
  • Hui Li ,
  • Fengyu Zhao ,
  • Haiyang Cheng
Expand
  • a Jilin Provincial Key Laboratory of Green Chemistry and Process, State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
    b School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026
    c School of Materials Science and Engineering, Shanghai University, Shanghai 200444
These authors contributed equally to this work

Received date: 2024-05-29

  Revised date: 2024-08-22

  Online published: 2024-09-10

Supported by

National Natural Science Foundation of China(22172155)

摘要

从绿色和可持续化学的角度, 利用CO2作为单体合成聚合物材料是一个重要而有潜在应用价值的研究课题. 以CO2与4,7,10-三氧杂-1,13-十三烷二胺和三(2-氨基乙基)胺(TAEA)进行缩聚反应, 合成了一种新型的CO2基聚脲(PUa). TAEA作为交联试剂, TAEA的加入显著改善了PUa的力学性能. 所形成的微交联PUa表现出优异的机械性能, 拉伸强度为26.8 MPa, 断裂伸长率为34%, 杨氏模量为351 MPa. 此外, 微交联PUa可以重塑3次, 力学性能没有明显变化, 这归因于主链之间的氢键相互作用和微交联结构的存在. 此外, 合成的CO2基PUa具有优异的热性能, 初始分解温度在300 ℃以上, 并且对多种有机溶剂具有耐受性.

本文引用格式

黄文翰 , 姜山 , 李慧 , 赵凤玉 , 程海洋 . 二氧化碳基可再加工微交联热固性聚脲的合成[J]. 有机化学, 2024 , 44(10) : 3178 -3184 . DOI: 10.6023/cjoc202405045

Abstract

The use of CO2 as monomer to synthesize polymer materials is an important and potential applications topic from the viewpoint of green and sustainable chemistry. A new kind of CO2-based polyurea (PUa) was synthesized by polycondensation of CO2 with 4,7,10-trioxa-1,13-tridecanediamine and tris(2-aminoethyl)amine (TAEA). TAEA was used as cross-link reagent. The mechanical properties of PUa were significantly improved by inserted the crosslink agent of TAEA. The formed slight cross-linked PUa exhibited excellent mechanical properties with tensile strength of 26.8 MPa, elongation at break of 34% and Young’s modulus of 351 MPa. Moreover, it could be remolded for 3 times without obvious change in the mechanical properties, which are ascribed to the hydrogen bonding interaction among the main chains and the slight cross-linked structure. In addition, the synthesized CO2-based PUa is of outstanding thermal performance with an initial decomposition temperature above 300 ℃, besides it is tolerance for a variety of organic solvents.

参考文献

[1]
Donphai, W.; Phichairatanaphong, O.; Fujii, R.; Li, P.; Chang, T.; Yabushita, M.; Nakagawa, Y.; Tomishige, K. Mater. Today Sustain. 2023, 24, 100549.
[2]
(a) Dai, X.; Qi, K.; Liu, C.; Lu, X.; Qi, W. Carbon 2023, 202, 51.
[2]
(b) Wang, R.; Wan, J.; Guo, H.; Tian, B.; Li, S.; Li, J.; Liu, S.; James, T. D.; Chen, Z. Carbon 2023, 211, 118118.
[2]
(c) Zhang, F.; Bulut, S.; Shen, X.; Dong, M.; Wang, Y.; Cheng, X.; Liu, H.; Han, B. Green Chem. 2021, 23, 1147.
[3]
(a) Chen, X. W.; Yue, J. P.; Wang, K.; Gui, Y. Y.; Niu, Y. N.; Liu, J.; Ran, C. K.; Kong, W.; Zhou, W. J.; Yu, D. G. Angew. Chem., Int. Ed. 2021, 60, 14068.
[3]
(b) Zhang, W.; Liao, L. L.; Li, L.; Liu, Y.; Dai, L. F.; Sun, G. Q.; Ran, C. K.; Ye, J. H.; Lan, Y.; Yu, D. G. Angew. Chem., Int. Ed. 2023, 62, e202301892.
[3]
(c) Pan, Y. Z.; Meng, X. J.; Wang, Y. C.; He, M. X. Chin. J. Org. Chem. 2023, 43, 1416. (in Chinese)
[3]
(潘永周, 蒙秀金, 王迎春, 何慕雪, 有机化学, 2023, 43, 1416.)
[4]
(a) Wu, C. Y.; Cheng, H. Y.; Liu, R. X.; Wang, Q.; Hao, Y. F.; Yu, Y. C.; Zhao, F. Y. Green Chem. 2010, 12, 1811.
[4]
(b) Wang, S.; Song, L.; Qu, Z. Chem. Eng. J. 2023, 469, 144008.
[5]
(a) Parra, O.; Portillo, A.; Ere?a, J.; Aguayo, A. T.; Bilbao, J.; Ateka, A. Fuel Process. Technol. 2023, 245, 107745.
[5]
(b) Kamkeng, A. D. N.; Wang, M. Chem. Eng. J. 2023, 462, 142048.
[5]
(c) Huang, W B.; Qiu, L. Q.; Ren, F. Y.; He, L. N. Chin. J. Org. Chem. 2021, 41, 3914. (in Chinese)
[5]
(黄文斌, 邱丽琪, 任方煜, 何良年, 有机化学, 2021, 41, 3914.)
[5]
(d) Du, J.; Xin, Y.; Dong, M.; Yang, J.; Xu, Q.; Liu, H.; Han, B. Small 2021, 17, 2102629.
[6]
(a) Wang, M.; Liu, S.; Chen, X.; Wang, X.; Wang, F. Polym. Chem. 2022, 13, 1731.
[6]
(b) Yang, G. W.; Wu, G. P. ACS Sustainable Chem. Eng. 2018, 7, 1372.
[6]
(c) Liu, J.; Jia, M.; Gnanou, Y.; Feng, X. Macromolecules 2024, 57, 5380.
[7]
(a) Dong, J.; Liu, B.; Ding, H.; Shi, J.; Liu, N.; Dai, B.; Kim, I. Polym. Chem. 2020, 11, 7524.
[7]
(b) Poussard, L.; Mariage, J.; Grignard, B.; Detrembleur, C.; Jér?me, C.; Calberg, C.; Heinrichs, B.; De Winter, J.; Gerbaux, P.; Raquez, J. M.; Bonnaud, L.; Dubois, P. Macromolecules 2016, 49, 2162.
[7]
(c) Ren, F. Y.; You, F.; Gao, S.; Xie, W. H.; He, L. N.; Li, H. R. Eur. Polym. J. 2021, 153, 110501.
[7]
(d) Jiang, S.; Liu, L. Polymer 2022, 244, 124652.
[8]
(a) Ou, X.; Zou, X.; Liu, Q.; Li, L.; Li, S.; Cui, Y.; Zhou, Y.; Yan, F. Chem. Mater. 2023, 35, 1218.
[8]
(b) Ou, X.; Pan, J.; Liu, Q.; Niu, Y.; Zhou, Y.; Yan, F. Adv. Mater. 2024, 36, 2312906.
[8]
(c) Ou, X.; Niu, Y.; Liu, Q.; Li, L.; Wei, F.; Cui, Y.; Zhou, Y.; Yan, F. Prog. Polym. Sci. 2024, 149, 101780.
[8]
(d) Wu, P. X.; Wang, X. C.; Shi, R. H.; Cheng, H. Y.; Zhao, F. Y. Green Chem. 2022, 24, 1561.
[8]
(e) Li, H.; Huang, W. H.; Zhao, F. Y., Cheng, H. Y. ACS Sustainable Chem. Eng. 2024, 12, 8552.
[9]
(a) Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci., Part B: Polym. Lett. 1969, 7, 287.
[9]
(b) Shi, R. H.; Cheng, H. Y.; Li, H. X.; Wu, P. X.; Zhang, C.; Arai, M.; Zhao, F. Y. Green Energy Environ. 2022, 7, 477.
[10]
Grignard, B.; Gennen, S.; Jér?me, C.; Kleij, A. W.; Detrembleur, C. Chem. Soc. Rev. 2019, 48, 4466.
[11]
(a) Alagi, P.; Ghorpade, R.; Choi, Y. J.; Patil, U.; Kim, I.; Baik, J. H.; Hong, S. C. ACS Sustainable Chem. Eng. 2017, 5, 3871.
[11]
(b) Seychal, G.; Ocando, C.; Bonnaud, L.; De Winter, J.; Grignard, B.; Detrembleur, C.; Sardon, H.; Aramburu, N.; Raquez, J. M. ACS Appl. Polym. Mater. 2023, 5, 5567.
[12]
Wu, D.; Martin, R. T.; Pi?a, J.; Kwon, J.; Crockett, M. P.; Thomas, A. A.; Gutierrez, O.; Park, N. H.; Hedrick, J. L.; Campos, L. M. Angew. Chem., Int. Ed. 2024, 63, e202401281.
[13]
(a) Xie, S.; Wang, D.; Zhang, S.; Xu, J.; Fu, J. J. Mater. Chem. A 2022, 10, 9457.
[13]
(b) Wang, D.; Wang, Z.; Ren, S.; Xu, J.; Wang, C.; Hu, P.; Fu, J. Mater. Horiz. 2021, 8, 2238.
[13]
(c) Li, H.; Xu, F.; Wang, J.; Zhang, J.; Wang, H.; Li, Y.; Sun, J. Nano Energy 2023, 108, 108243.
[14]
Ritter, B. S.; Mülhaupt, R. Macromol. Mater. Eng. 2016, 302, 1600338.
[15]
Li, H.; Cheng, H. Y.; Zhao, F. Y. Asian J. Org. Chem. 2022, 11, e202200338.
[16]
Wu, P. X.; Cheng, H. Y.; Shi, R. H.; Jiang, S.; Wu, Q. F.; Zhang, C.; Arai, M.; Zhao, F. Y. Adv. Synth. Catal. 2019, 361, 317.
[17]
Zhao, B.; Mei, H.; Wang, H.; Li, L.; Zheng, S. ACS Appl. Polym. Mater. 2021, 4, 509.
[18]
(a) Jiang, S.; Cheng, H. Y.; Shi, R. H.; Wu, P. X.; Lin, W. W.; Zhang, C.; Arai, M.; Zhao, F. Y. ACS Appl. Mater. Interfaces 2019, 11, 47413.
[18]
(b) Shi, R. H.; Jiang, S.; Cheng, H. Y.; Wu, P. X.; Zhang, C.; Arai, M.; Zhao, F. Y. ACS Sustainable Chem. Eng. 2020, 8, 18626.
[19]
Jiang, S.; Shi, R. H.; Cheng, H. Y.; Zhang, C.; Zhao, F. Y. Green Energy Environ. 2017, 2, 370.
[20]
Guo, Z.; Bao, C.; Wang, X.; Lu, X.; Sun, H.; Li, X.; Li, J.; Sun, J. J. Mater. Chem. A 2021, 9, 11025.
文章导航

/