综述与进展

手性配体在钯催化配位辅助对映选择性C(sp3)—H键官能团化反应中的应用

  • 袁晨晖 ,
  • 焦雷
展开
  • 清华大学化学系 基础分子科学中心 北京 100084

收稿日期: 2024-06-01

  修回日期: 2024-07-31

  网络出版日期: 2024-09-10

基金资助

国家自然科学基金(21933007); 国家自然科学基金(21822304)

Chiral Ligands for Palladium-Catalyzed Coordination-Assisted Enantioselective C(sp3)—H Functionalization Reactions

  • Chen-Hui Yuan ,
  • Lei Jiao
Expand
  • Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084

Received date: 2024-06-01

  Revised date: 2024-07-31

  Online published: 2024-09-10

Supported by

National Natural Science Foundation of China(21933007); National Natural Science Foundation of China(21822304)

摘要

过渡金属催化的对映选择性C(sp3)—H键官能团化反应已成为构建手性分子的一种有效策略. 与其他过渡金属相比, 钯催化体系显示出良好的反应活性、多功能性和官能团耐受性, 是目前最常用的催化体系之一, 实现了一系列对映选择性C(sp3)—H键官能团化反应. 在这些反应中, 手性配体起到了举足轻重的作用, 是反应活性和立体选择性控制的关键因素. 聚焦于手性配体, 总结了近年来钯催化配位辅助对映选择性C(sp3)—H键官能团化反应的最新进展, 并着重介绍了手性配体的设计理念、反应机制和立体控制模型.

本文引用格式

袁晨晖 , 焦雷 . 手性配体在钯催化配位辅助对映选择性C(sp3)—H键官能团化反应中的应用[J]. 有机化学, 2025 , 45(2) : 602 -619 . DOI: 10.6023/cjoc202406002

Abstract

Abstract Enantioselective C(sp3)—H functionalization reactions have emerged as a powerful and straightforward strategy in the construction of chiral molecules. Palladium, highlighted by its remarkable reactivity, versatility, and functional group tolerance, stands out among transition metal catalysts and is one of the most prevalently employed in enantioselective C(sp3)—H functionalization reactions. In these reactions, chiral ligands play a pivotal role, serving as a decisive factor in controlling both reactivity and stereoselectivity. Focusing on chiral ligands, the latest progress in palladium-catalyzed coordination-assisted enantioselective C(sp3)—H bond functionalization reactions in recent years is summarized, emphasizing the design concept, reaction mechanism, and stereocontrol model of chiral ligands.

参考文献

[1]
(a) Guillemard, L.; Kaplaneris, N.; Ackermann, L.; Johansson, M. J. Nat. Rev. Chem. 2021, 5, 522.
[1]
(b) Lam, N. Y. S.; Wu, K.; Yu, J.-Q. Angew. Chem., Int. Ed. 2021, 60, 15767.
[1]
(c) Sinha, S. K.; Ghosh, P.; Jain, S.; Maiti, S.; Al-Thabati, S. A.; Alshehri, A. A.; Mokhtar, M.; Maiti, D. Chem. Soc. Rev. 2023, 52, 7461.
[2]
(a) Achar, T. K.; Maiti, S.; Jana, S.; Maiti, D. ACS Catal. 2020, 10, 13748.
[2]
(b) Liu, B.; Romine, A. M.; Rubel, C. Z.; Engle, K. M.; Shi, B.-F. Chem. Rev. 2021, 121, 14957.
[2]
(c) Zhan, B.-B.; Jin, L.; Shi, B.-F. Trends Chem. 2022, 4, 220.
[3]
Siegbahn, P. E. M. J. Phy. Chem. 1995, 99, 12723.
[4]
Han, Y.-Q.; Shi, B.-F. Acta Chim. Sinica 2023, 81, 1522 (in Chinese).
[4]
(韩叶强, 史炳锋, 化学学报, 2023, 81, 1522.)
[5]
(a) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.
[5]
(b) Sambiagio, C.; Sch?nbauer, D.; Blieck, R.; Dao-Huy, T.; Potot- schnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; Maes, B. U. W.; Schnürch, M. Chem. Soc. Rev. 2018, 47, 6603.
[6]
(a) Wang, P.-S.; Gong, L.-Z. Chin. J. Chem. 2023, 41, 1841.
[6]
(b) Wang, P.-S.; Gong, L.-Z. Acc. Chem. Res. 2020, 53, 2841.
[7]
(a) Baudoin, O. Acc. Chem. Res. 2017, 50, 1114.
[7]
(b) Vyhivskyi, O.; Kudashev, A.; Miyakoshi, T.; Baudoin, O. Chem.-Eur. J. 2021, 27, 1231.
[8]
He, Y.-M.; Cheng, Y.-Z.; Duan, Y.; Zhang, Y.-D.; Fan, Q.-H.; You, S.-L.; Luo, S.; Zhu, S.-F.; Fu, X.-F.; Zhou, Q.-L. CCS Chem. 2023, 5, 2685.
[9]
(a) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882.
[9]
(b) Shao, Q.; Wu, K.; Zhuang, Z.; Qian, S.; Yu, J.-Q. Acc. Chem. Res. 2020, 53, 833.
[10]
Wasa, M.; Engle, K. M.; Lin, D. W.; Yoo, E. J.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 19598.
[11]
Chan, K. S. L.; Fu, H.-Y.; Yu, J.-Q. J. Am. Chem. Soc. 2015, 137, 2042.
[12]
Hu, L.; Shen, P.-X.; Shao, Q.; Hong, K.; Qiao, J. X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2019, 58, 2134.
[13]
He, C.; Gaunt, M. J. Angew. Chem., Int. Ed. 2015, 54, 15840.
[14]
Rodrigalvarez, J.; Nappi, M.; Azuma, H.; Flodén, N. J.; Burns, M. E.; Gaunt, M. J. Nat. Chem. 2020, 12, 76.
[15]
Rodrigalvarez, J.; Reeve, L. A.; Miró, J.; Gaunt, M. J. J. Am. Chem. Soc. 2022, 144, 3939.
[16]
Xiao, K.-J.; Lin, D. W.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 8138.
[17]
(a) Chen, G.; Gong, W.; Zhuang, Z.; Andr?, M. S.; Chen, Y.-Q.; Hong, X.; Yang, Y.-F.; Liu, T.; Houk, K. N.; Yu, J.-Q. Science 2016, 353, 1023.
[17]
(b) Andr?, M. S.; Schifferer, L.; Pollok, C. H.; Merten, C.; Goo?en, L. J.; Yu, J.-Q. Chem.-Eur. J. 2019, 25, 8503.
[18]
(a) He, J.; Shao, Q.; Wu, Q.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 3344.
[18]
(b) Wu, Q.-F.; Shen, P.-X.; He, J.; Wang, X.-B.; Zhang, F.; Shao, Q.; Zhu, R.-Y.; Mapelli, C.; Qiao, J. X.; Poss, M. A.; Yu, J.-Q. Science 2017, 355, 499.
[18]
(c) Shao, Q.; Wu, Q.-F.; He, J.; Yu, J.-Q. J. Am. Chem. Soc. 2018, 140, 5322.
[19]
Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu, J.-Q. J. Am. Chem. Soc. 2018, 140, 6545.
[20]
Jerhaoui, S.; Djukic, J.-P.; Wencel-Delord, J.; Colobert, F. ACS Catal. 2019, 9, 2532.
[21]
Zhuang, Z.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 12015.
[22]
Zhuang, Z.; Herron, A. N.; Yu, J.-Q. Angew. Chem., Int. Ed. 2021, 60, 16382.
[23]
Wang, P.; Farmer, M. E.; Huo, X.; Jain, P.; Shen, P.-X.; Ishoey, M.; Bradner, J. E.; Wisniewski, S. R.; Eastgate, M. D.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 9269.
[24]
Wang, Y.-J.; Yuan, C.-H.; Chu, D.-Z.; Jiao, L. Chem. Sci. 2020, 11, 11042.
[25]
Yuan, C.-H.; Wang, X.-X.; Jiao, L. Angew. Chem., Int. Ed. 2023, 62, e202300854.
[26]
Yuan, C.-H.; Jiao, L. Org. Lett. 2024, 26, 29.
[27]
Zhang, T.; Zhang, Z.-Y.; Kang, G.; Sheng, T.; Yan, J.-L.; Yang, Y.-B.; Ouyang, Y.; Yu, J.-Q. Science 2024, 384, 793.
[28]
(a) Maji, R.; Mallojjala, S. C.; Wheeler, S. E. Chem. Soc. Rev. 2018, 47, 1142.
[28]
(b) Li, X.; Song, Q. Chin. Chem. Lett. 2018, 29, 1181.
[29]
Connon, S. J. Angew. Chem., Int. Ed. 2006, 45, 3909.
[30]
(a) Wang, P.-S.; Gong, L.-Z. Synthesis 2021, 54, 4795.
[30]
(b) Sumit; Chandra, D.; Sharma, U. Chem. Commun. 2023, 59, 9288.
[31]
Yan, S.-B.; Zhang, S.; Duan, W.-L. Org. Lett. 2015, 17, 2458.
[32]
Wang, H.; Tong, H.-R.; He, G.; Chen, G. Angew. Chem., Int. Ed. 2016, 55, 15387.
[33]
Bay, K. L.; Yang, Y.-F.; Houk, K. N. J. Org. Chem. 2018, 83, 14786.
[34]
Zhang, Q.; Shi, B.-F. Acc. Chem. Res. 2021, 54, 2750.
[35]
Yan, S.-Y.; Han, Y.-Q.; Yao, Q.-J.; Nie, X.-L.; Liu, L.; Shi, B.-F. Angew. Chem., Int. Ed. 2018, 57, 9093.
[36]
Han, Y.-Q.; Zhang, Q.; Yang, X.; Jiang, M.-X.; Ding, Y.; Shi, B.-F. Org. Lett. 2021, 23, 97.
[37]
Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Nat. Chem. 2017, 9, 140.
[38]
Jiang, H.-J.; Zhong, X.-M.; Liu, Z.-Y.; Geng, R.-L.; Li, Y.-Y.; Wu, Y.-D.; Zhang, X.; Gong, L.-Z. Angew. Chem., Int. Ed. 2020, 59, 12774.
[39]
Smalley, A. P.; Cuthbertson, J. D.; Gaunt, M. J. J. Am. Chem. Soc. 2017, 139, 1412.
[40]
Han, Y.-Q.; Ding, Y.; Zhou, T.; Yan, S.-Y.; Song, H.; Shi, B.-F. J. Am. Chem. Soc. 2019, 141, 4558.
[41]
(a) Ding, Y.; Han, Y.-Q.; Wu, L.-S.; Zhou, T.; Yao, Q.-J.; Feng, Y.-L.; Li, Y.; Kong, K.-X.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 14060.
[41]
(b) Wu, L.-S.; Ding, Y.; Han, Y.-Q.; Shi, B.-F. Org. Lett. 2021, 23, 2048.
[42]
(a) Han, Y.-Q.; Yang, X.; Kong, K.-X.; Deng, Y.-T.; Wu, L.-S.; Ding, Y.; Shi, B.-F. Angew. Chem., Int. Ed. 2020, 59, 20455.
[42]
(b) Yang, X.; Jiang, M.-X.; Zhou, T.; Han, Y.-Q.; Xu, X.-T.; Zhang, K.; Shi, B.-F. Chem. Commun. 2021, 57, 5562.
[43]
Zhou, T.; Jiang, M.-X.; Yang, X.; Yue, Q.; Han, Y.-Q.; Ding, Y.; Shi, B.-F. Chin. J. Chem. 2020, 38, 242.
[44]
Jiang, M.-X.; Yang, X.; Han, Y.-Q.; Zhou, T.; Xu, X.-T.; Zhang, K.; Shi, B.-F. Org. Chem. Front. 2021, 8, 2903.
[45]
Tong, H.-R.; Zheng, W.; Lv, X.; He, G.; Liu, P.; Chen, G. ACS Catal. 2020, 10, 114.
[46]
Wang, C.-Y.; Zhou, T.; Shi, B.-F. ACS Catal. 2024, 14, 7213.
[47]
Tong, H.-R.; Zheng, S.; Li, X.; Deng, Z.; Wang, H.; He, G.; Peng, Q.; Chen, G. ACS Catal. 2018, 8, 11502.
[48]
Jiang, H.-J.; Zhong, X.-M.; Yu, J.; Zhang, Y.; Zhang, X.; Wu, Y.-D.; Gong, L.-Z. Angew. Chem., Int. Ed. 2019, 58, 1803.
[49]
Suseelan, A. S.; Dutta, A.; Lahiri, G. K.; Maiti, D. Trends Chem. 2021, 3, 188.
[50]
Yuan, C.-H.; Wang, X.-X.; Huang, K.; Jiao, L. Angew. Chem., Int. Ed. 2024, 63, e202405062.
文章导航

/