惰性键与二氧化碳的电化学羧化反应研究
收稿日期: 2024-06-28
修回日期: 2024-07-28
网络出版日期: 2024-09-10
基金资助
国家重点研发计划(2020YFA0710200); 国家自然科学基金(22171090); 中央高校基本科研业务费专项资金和重庆市自然科学基金(CSTB-2022NSCQ-MSX0388)
Recent Advances in Electrochemical Carboxylation of Inert Chemical Bonds with Carbon Dioxide
Received date: 2024-06-28
Revised date: 2024-07-28
Online published: 2024-09-10
Supported by
National Key Research and Development Program of China(2020YFA0710200); National Natural Science Foundation of China(22171090); Fundamental Research Funds for the Central Universities, and the Natural Science Foundation of Chongqing City(CSTB-2022NSCQ-MSX0388)
高小童 , 钟昱卿 , 冯楠 , 孙莹 , 杨得勇 , 周锋 . 惰性键与二氧化碳的电化学羧化反应研究[J]. 有机化学, 2024 , 44(10) : 3043 -3062 . DOI: 10.6023/cjoc202406045
Carbon dioxide (CO2) is a green and renewable C1 synthon, and the direct carboxylation of inert chemical bonds with CO2 could afford high value-added carboxylic acid derivatives from simple molecules, which feature both atomic and step economies. Organic electrosynthesis is a green synthesis technology using electrons as "reagents", and the development of electrochemical carboxylation of inert bonds with CO2 has become a hot research topic in recent years. The recent progress on the electroreductive carboxylation of inert bonds with CO2 is summarized, including C—H, C—C, C—O, and C—F single bonds. The mechanism and application of these reactions are emphatically discussed, and the challenges and development trends in this field are also covered.
| [1] | (a) He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52, 9620. |
| [1] | (b) Artz, J.; Mueller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434. |
| [2] | (a) Aresta, M. Carbon Dioxide as Chemical Feedstock, Wiley- VCH, Weinheim, 2010. |
| [2] | (b) He, L. N. Carbon Dioxide Chemistry, Science Press, Beijing, 2013. (in Chinese) |
| [2] | (何良年, 二氧化碳化学, 科学出版社, 北京, 2013.) |
| [2] | (c) Lu, X. B. Carbon Dioxide and Organometallics, Cham, Switzerland, Springer, 2016. |
| [2] | (d) Liu, Z. M. Chemical Conversion of Carbon Dioxide, Science Press, Beijing, 2018. (in Chinese) |
| [2] | (刘志敏, 二氧化碳化学转化, 科学出版社, 北京, 2018.) |
| [3] | (a) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933. |
| [3] | (b) Kleij, A. W.; North, M.; Urakawa, A. ChemSusChem 2017, 10, 1036. |
| [3] | (c) Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Chin. J. Chem. 2018, 36, 644. |
| [3] | (d) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382. |
| [3] | (e) Zhou, C.; Li, M.; Yu, J. T.; Sun, S.; Cheng, J. Chin. J. Org. Chem. 2020, 40, 2221. (in Chinese) |
| [3] | (周聪, 李渺, 于金涛, 孙松, 成江, 有机化学, 2020, 40, 2221.) |
| [3] | (f) Shi, Y.; Pan, B.-W.; Zhou, Y.; Zhou, J.; Liu, Y.-L.; Zhou, F. Org. Biomol. Chem. 2020, 18, 8597. |
| [3] | (g) Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Acc. Chem. Res. 2021, 54, 2518. |
| [3] | (h) Ran, C.-K.; Liao, L.-L.; Gao, T.-Y.; Gui, Y.-Y.; Yu, D.-G. Curr. Opin. Green Sustainable Chem. 2021, 32, 100525. |
| [3] | (i) Wang, L.; Qi, C.; Xiong, W.; Jiang, H. Chin. J. Catal. 2022, 43, 1598. |
| [4] | (a) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255. |
| [4] | (b) Bach, R. D.; Dmitrenko, O. J. Am. Chem. Soc. 2004, 126, 4444. |
| [4] | (c) Wren, S. W.; Vogelhuber, K. M.; Garver, J. M.; Kato, S.; Sheps, L.; Bierbaum, V. M.; Lineberger, W. C. J. Am. Chem. Soc. 2012, 134, 6584. |
| [5] | (a) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308. |
| [5] | (b) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48, 886. |
| [5] | (c) Dixneuf, P. H.; Doucet, H. C-H Bond Activation and Catalytic Functionalization I, Springer, Switzerland, 2016. |
| [5] | (d) Shi, S.-H.; Liang, Y.; Jiao, N. Chem. Rev. 2021, 121, 485. |
| [5] | (e) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506. |
| [5] | (f) Wang, Z.; Sun, Y.; Shen, L.-Y.; Yang, W.-C.; Meng, F.; Li, P. Org. Chem. Front. 2022, 9, 853. |
| [5] | (g) Gao, R.; Wen, L.; Guo, W. Chin. J. Org. Chem. 2024, 44, 892. (in Chinese) |
| [5] | (高瑞林, 文丽荣, 郭维斯, 有机化学, 2024, 44, 892.) |
| [6] | (a) Hong, J.; Li, M.; Zhang, J.; Sun, B.; Mo, F. ChemSusChem 2019, 12, 6. |
| [6] | (b) Song, L.; Jiang, Y.-X.; Zhang, Z.; Gui, Y.-Y.; Zhou, X.-Y.; Yu, D.-G. Chem. Commun. 2020, 56, 8355. |
| [6] | (c) Behmagham, F.; Abdullah, M. N.; Saied, S. M.; Azeez, M. D.; Abbass, R. R.; Adhab, A. H.; Vessally, E. RSC Adv. 2023, 13, 32502. |
| [7] | (a) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230. |
| [7] | (b) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339. |
| [7] | (c) Pollok, D.; Waldvogel, S. R. Chem. Sci. 2020, 11, 12386. |
| [7] | (d) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300. |
| [7] | (e) Yuan, Y.; Yang, Y.; Lei, A. Chem. Soc. Rev. 2021, 50, 10058. |
| [7] | (f) Cheng, X.; Lei, A.; Mei, T.-S.; Xu, H.-C.; Xu, K.; Zeng, C. CCS Chem. 2022, 4, 1120. |
| [8] | (a) Pimparkar, S.; Dalvi, A. K.; Koodan, A.; Maiti, S.; Al-Thabaiti, S. A.; Mokhtar, M.; Dutta, A.; Lee, Y. R.; Maiti, D. Green Chem. 2021, 23, 9283. |
| [8] | (b) Senboku, H. Chem. Rec. 2021, 21, 2354. |
| [8] | (c) Yang, Z.; Yu, Y.; Lai, L.; Zhou, L.; Ye, K.; Chen, F.-E. Green Synth. Catal. 2021, 2, 19. |
| [8] | (d) Liu, X.-F.; Zhang, K.; Tao, L.; Lu, X.-B.; Zhang, W.-Z. Green Chem. Eng. 2022, 3, 125. |
| [8] | (e) Yu, Z.; Shi, M. Chem. Commun. 2022, 58, 13539. |
| [8] | (f) Wang, S.; Feng, T.; Wang, Y.; Qiu, Y. Chem Asian J. 2022, 17, e202200543. |
| [8] | (g) Villo, P.; Shatskiy, A.; K?rk?s, M. D.; Lundberg, H. Angew. Chem., Int. Ed. 2023, 62, e202211952. |
| [8] | (h) Pan, Y.; Meng, X.; Wang, Y.; He, M. Chin. J. Org. Chem. 2023, 43, 1416. (in Chinese) |
| [8] | (潘永周, 蒙秀金, 王迎春, 何慕雪, 有机化学, 2023, 43, 1416.) |
| [9] | Luo, J.; Larrosa, I. ChemSusChem 2017, 10, 3317. |
| [10] | Sun, G.-Q.; Yu, P.; Zhang, W.; Zhang, W.; Wang, Y.; Liao, L.-L.; Zhang, Z.; Li, L.; Lu, Z.; Yu, D.-G.; Lin, S. Nature 2023, 615, 67. |
| [11] | Zhao, Z.; Liu, Y.; Wang, S.; Tang, S.; Ma, D.; Zhu, Z.; Guo, C.; Qiu, Y. Angew. Chem., Int. Ed. 2023, 62, e202214710. |
| [12] | (a) Senboku, H.; Yamauchi, Y.; Fukuhara, T.; Hara, S. Electrochemistry 2006, 74, 612. |
| [12] | (b) Pradhan, S.; Das, S. Synlett 2023, 34, 1327. |
| [13] | Muchez, L.; Vos, D. E. D.; Kim, M. J. ACS Sustainable Chem. Eng. 2019, 7, 15860. |
| [14] | Zhang, S.; Li, X.; He, L.-N. Acta Chim. Sinica 2016, 74, 17. (in Chinese) |
| [14] | (张帅, 李雪冬, 何良年, 化学学报, 2016, 74, 17.) |
| [15] | Liao, L.-L.; Wang, Z.-H.; Cao, K.-G.; Sun, G.-Q.; Zhang, W.; Ran, C.-K.; Li, Y.; Chen, L.; Cao, G.-M.; Yu, D.-G. J. Am. Chem. Soc. 2022, 144, 2062. |
| [16] | Zhao, B.; Pan, Z.; Pan, J.; Deng, H.; Bu, X.; Ma, M.; Xue, F. Green Chem. 2023, 25, 3095. |
| [17] | Liu, X.-F.; Zhang, K.; Wang, L.-L.; Wang, H.; Huang, J.; Zhang, X.-T.; Lu, X.-B.; Zhang, W.-Z. J. Org. Chem. 2023, 88, 5212. |
| [18] | (a) Qiu, Z.; Li, C. J. Chem. Rev. 2020, 120, 10454. |
| [18] | (b) Boit, T. B.; Bulger, A. S.; Dander, J. E.; Garg, N. K. ACS Catal. 2020, 10, 12109. |
| [19] | Jiao, K.-J.; Li, Z.-M. Xu, X.-T.; Zhang, L.-P.; Li, Y.-Q.; Zhang, K. Mei, T.-S. Org. Chem. Front. 2018, 5, 2244. |
| [20] | (a) Lin, Q.; Li, L.; Luo, S. Chem. Eur. J. 2019, 25, 10033. |
| [20] | (b) Wang, X.; Xu, X.; Wang, Z.; Fang, P.; Mei, T. Chin. J. Org. Chem. 2020, 40, 3738. (in Chinese) |
| [20] | (王向阳, 徐学涛, 王振华, 方萍, 梅天胜, 有机化学, 2020, 40, 3738.) |
| [20] | (c) Chang, X.; Zhang, Q.; Guo, C. Angew. Chem., Int. Ed. 2020, 59, 12612. |
| [20] | (d) Li, H.; Xue, Y.-F.; Ge, Q.; Liu, M.; Cong, H.; Tao, Z. Mol. Catal. 2021, 499, 111296. |
| [20] | (e) Jiao, K. J.; Wang, Z.-H.; Ma, C.; Liu, H.-L.; Cheng, B.; Mei, T.-S. Chem Catal. 2022, 2, 3019. |
| [20] | (f) Wang, H.; Li, M.-H.; Liu, H.; Wang, Y.-L.; Zhu, J.-W.; Lu, J.-X. ChemCatChem 2024, 16, e202301593. |
| [20] | (g) Gao, C.; Liu, X.; Wang, M.; Liu, S.; Zhu, T.; Zhang, Y.; Hao, E.; Yang, Q. Chin. J. Org. Chem. 2024, 44, 673. (in Chinese) |
| [20] | (高淳, 刘欣, 王明慧, 刘淑贤, 朱婷婷, 张怡康, 郝二军, 杨启亮, 有机化学, 2024, 44, 673.) |
| [21] | Zhao, R.; Lin, Z.; Maksso, I.; Struwe, J.; Ackermann, L. ChemElectroChem 2022, 9, e202200989. |
| [22] | Qin, J.-H.; Xiong, Z.-Q.; Cheng, C.; Hu, M.; Li, J.-H. Org. Lett. 2023, 25, 9176. |
| [23] | Hu, Q.; Wei, B.; Wang, M.; Liu, M.; Chen, X.-W.; Ran, C.-K.; Wang, G.; Chen, Z.; Li, H.; Song, J.; Yu, D.-G.; Guo, C. J. Am. Chem. Soc. 2024, 146, 14864. |
| [24] | Senboku, H.; Sakai, K.; Fukui, A.; Sato, Y.; Yamauchi, Y. ChemElectroChem 2019, 6, 4158. |
| [25] | Liu, X.; Wang, H.; Tao, L.; Ren, W.; Lu, X.; Zhang, W. Acta Phys.-Chim. Sin. 2024, 40, 2307008. |
| [26] | Senboku, H.; Yoneda, K.; Hara, S. Tetrahedron Lett. 2015, 56, 6772. |
| [27] | Hayama, M.; Senboku, H. Electrochemistry 2023, 91, 112011. |
| [28] | Kumar, S.; Singh, A. K. Green Chem. 2023, 25, 8516. |
| [29] | (a) Lan, D.-H.; Fan, N.; Wang, Y.; Gao, X.; Zhang, P.; Chen, L.; Au, C.-T.; Yin, S.-F. Chin. J. Catal. 2016, 37, 826. |
| [29] | (b) Gómez, J. E. A.; Kleij, W. Curr. Opin. Green Sustainable Chem. 2017, 3, 55. |
| [30] | Zhang, K.; Ren, B.-H.; Liu, X.-F.; Wang, L.-L.; Zhang, M.; Ren, W.-M.; Lu, X.-B.; Zhang, W.-Z. Angew. Chem., Int. Ed. 2022, 134, e202207660. |
| [31] | Wang, Y.; Tang, S.; Yang, G.; Wang, S.; Ma, D.; Qiu, Y. Angew. Chem., Int. Ed. 2022, 134, e202207746. |
| [32] | Tao, L.; Liu, X.-F.; Ren, B.-H.; Wang, H.; Sun, H.-Q.; Zhang, K.; Teng, Y.-Q.; Ren, W.-M.; Lu, X.-B.; Zhang, W.-Z. Org. Lett. 2024, 26, 542. |
| [33] | Tao, L.; Wang, H.; Liu, X.-F.; Ren, W.-M.; Lu, X.-B.; Zhang, W.-Z. Chem. Commun. 2024, 60, 5735. |
| [34] | Senboku, H.; Yoneda, K.; Hara, S. Electrochemistry 2013, 81,380382. |
| [35] | Gao, X.-T.; Zhang, Z.; Wang, X.; Tian, J.-S.; Xie, S.-L.; Zhou, F.; Zhou, J. Chem. Sci. 2020, 11, 10414. |
| [36] | (a) Xie, S.-L.; Gao, X.-T.; Wu, H.-H.; Zhou, F.; Zhou, J. Org. Lett. 2020, 22, 8424. |
| [36] | (b) Xie, S.-L.; Cui, X.-Y.; Gao, X.-T.; Zhou, F.; Wu, H.-H.; Zhou, J. Org. Chem. Front. 2019, 6, 3678. |
| [37] | Mondal, S.; Sarkar, S.; Wang, J. W.; Meanwell, M. W. Green Chem. 2023, 25, 9075. |
/
| 〈 |
|
〉 |