综述与进展

惰性键与二氧化碳的电化学羧化反应研究

  • 高小童 ,
  • 钟昱卿 ,
  • 冯楠 ,
  • 孙莹 ,
  • 杨得勇 ,
  • 周锋
展开
  • a 重庆科技大学化学化工学院 重庆 401331
    b 华东师范大学化学与分子工程学院 石油化工分子转化与反应工程全国重点实验室 上海市绿色化学与化工过程绿色化重点实验室 上海 200062

收稿日期: 2024-06-28

  修回日期: 2024-07-28

  网络出版日期: 2024-09-10

基金资助

国家重点研发计划(2020YFA0710200); 国家自然科学基金(22171090); 中央高校基本科研业务费专项资金和重庆市自然科学基金(CSTB-2022NSCQ-MSX0388)

Recent Advances in Electrochemical Carboxylation of Inert Chemical Bonds with Carbon Dioxide

  • Xiaotong Gao ,
  • Yuqing Zhong ,
  • Nan Feng ,
  • Ying Sun ,
  • Deyong Yang ,
  • Feng Zhou
Expand
  • a College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331
    b Shanghai Key Laboratory of Green Chemistry and Chemical Process, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062

Received date: 2024-06-28

  Revised date: 2024-07-28

  Online published: 2024-09-10

Supported by

National Key Research and Development Program of China(2020YFA0710200); National Natural Science Foundation of China(22171090); Fundamental Research Funds for the Central Universities, and the Natural Science Foundation of Chongqing City(CSTB-2022NSCQ-MSX0388)

摘要

二氧化碳(CO2)是一种绿色可再生的C1合成子, 通过与惰性键的羧化反应, 能够实现从简单分子到高附加值羧酸衍生物的直接转化, 兼具步骤经济性与原子经济性. 有机电合成是利用电子作“试剂”的绿色合成技术, 发展电化学促进的惰性键与二氧化碳的羧化反应成为近年研究热点. 按照C—H、C—C、C—O、C—F键的分类, 综述了二氧化碳参与惰性键的电还原羧化反应的研究成果, 着重讨论了反应机理及应用, 并对该领域发展趋势进行了展望.

本文引用格式

高小童 , 钟昱卿 , 冯楠 , 孙莹 , 杨得勇 , 周锋 . 惰性键与二氧化碳的电化学羧化反应研究[J]. 有机化学, 2024 , 44(10) : 3043 -3062 . DOI: 10.6023/cjoc202406045

Abstract

Carbon dioxide (CO2) is a green and renewable C1 synthon, and the direct carboxylation of inert chemical bonds with CO2 could afford high value-added carboxylic acid derivatives from simple molecules, which feature both atomic and step economies. Organic electrosynthesis is a green synthesis technology using electrons as "reagents", and the development of electrochemical carboxylation of inert bonds with CO2 has become a hot research topic in recent years. The recent progress on the electroreductive carboxylation of inert bonds with CO2 is summarized, including C—H, C—C, C—O, and C—F single bonds. The mechanism and application of these reactions are emphatically discussed, and the challenges and development trends in this field are also covered.

参考文献

[1]
(a) He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52, 9620.
[1]
(b) Artz, J.; Mueller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434.
[2]
(a) Aresta, M. Carbon Dioxide as Chemical Feedstock, Wiley- VCH, Weinheim, 2010.
[2]
(b) He, L. N. Carbon Dioxide Chemistry, Science Press, Beijing, 2013. (in Chinese)
[2]
(何良年, 二氧化碳化学, 科学出版社, 北京, 2013.)
[2]
(c) Lu, X. B. Carbon Dioxide and Organometallics, Cham, Switzerland, Springer, 2016.
[2]
(d) Liu, Z. M. Chemical Conversion of Carbon Dioxide, Science Press, Beijing, 2018. (in Chinese)
[2]
(刘志敏, 二氧化碳化学转化, 科学出版社, 北京, 2018.)
[3]
(a) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
[3]
(b) Kleij, A. W.; North, M.; Urakawa, A. ChemSusChem 2017, 10, 1036.
[3]
(c) Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Chin. J. Chem. 2018, 36, 644.
[3]
(d) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382.
[3]
(e) Zhou, C.; Li, M.; Yu, J. T.; Sun, S.; Cheng, J. Chin. J. Org. Chem. 2020, 40, 2221. (in Chinese)
[3]
(周聪, 李渺, 于金涛, 孙松, 成江, 有机化学, 2020, 40, 2221.)
[3]
(f) Shi, Y.; Pan, B.-W.; Zhou, Y.; Zhou, J.; Liu, Y.-L.; Zhou, F. Org. Biomol. Chem. 2020, 18, 8597.
[3]
(g) Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Acc. Chem. Res. 2021, 54, 2518.
[3]
(h) Ran, C.-K.; Liao, L.-L.; Gao, T.-Y.; Gui, Y.-Y.; Yu, D.-G. Curr. Opin. Green Sustainable Chem. 2021, 32, 100525.
[3]
(i) Wang, L.; Qi, C.; Xiong, W.; Jiang, H. Chin. J. Catal. 2022, 43, 1598.
[4]
(a) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
[4]
(b) Bach, R. D.; Dmitrenko, O. J. Am. Chem. Soc. 2004, 126, 4444.
[4]
(c) Wren, S. W.; Vogelhuber, K. M.; Garver, J. M.; Kato, S.; Sheps, L.; Bierbaum, V. M.; Lineberger, W. C. J. Am. Chem. Soc. 2012, 134, 6584.
[5]
(a) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
[5]
(b) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48, 886.
[5]
(c) Dixneuf, P. H.; Doucet, H. C-H Bond Activation and Catalytic Functionalization I, Springer, Switzerland, 2016.
[5]
(d) Shi, S.-H.; Liang, Y.; Jiao, N. Chem. Rev. 2021, 121, 485.
[5]
(e) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
[5]
(f) Wang, Z.; Sun, Y.; Shen, L.-Y.; Yang, W.-C.; Meng, F.; Li, P. Org. Chem. Front. 2022, 9, 853.
[5]
(g) Gao, R.; Wen, L.; Guo, W. Chin. J. Org. Chem. 2024, 44, 892. (in Chinese)
[5]
(高瑞林, 文丽荣, 郭维斯, 有机化学, 2024, 44, 892.)
[6]
(a) Hong, J.; Li, M.; Zhang, J.; Sun, B.; Mo, F. ChemSusChem 2019, 12, 6.
[6]
(b) Song, L.; Jiang, Y.-X.; Zhang, Z.; Gui, Y.-Y.; Zhou, X.-Y.; Yu, D.-G. Chem. Commun. 2020, 56, 8355.
[6]
(c) Behmagham, F.; Abdullah, M. N.; Saied, S. M.; Azeez, M. D.; Abbass, R. R.; Adhab, A. H.; Vessally, E. RSC Adv. 2023, 13, 32502.
[7]
(a) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
[7]
(b) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
[7]
(c) Pollok, D.; Waldvogel, S. R. Chem. Sci. 2020, 11, 12386.
[7]
(d) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
[7]
(e) Yuan, Y.; Yang, Y.; Lei, A. Chem. Soc. Rev. 2021, 50, 10058.
[7]
(f) Cheng, X.; Lei, A.; Mei, T.-S.; Xu, H.-C.; Xu, K.; Zeng, C. CCS Chem. 2022, 4, 1120.
[8]
(a) Pimparkar, S.; Dalvi, A. K.; Koodan, A.; Maiti, S.; Al-Thabaiti, S. A.; Mokhtar, M.; Dutta, A.; Lee, Y. R.; Maiti, D. Green Chem. 2021, 23, 9283.
[8]
(b) Senboku, H. Chem. Rec. 2021, 21, 2354.
[8]
(c) Yang, Z.; Yu, Y.; Lai, L.; Zhou, L.; Ye, K.; Chen, F.-E. Green Synth. Catal. 2021, 2, 19.
[8]
(d) Liu, X.-F.; Zhang, K.; Tao, L.; Lu, X.-B.; Zhang, W.-Z. Green Chem. Eng. 2022, 3, 125.
[8]
(e) Yu, Z.; Shi, M. Chem. Commun. 2022, 58, 13539.
[8]
(f) Wang, S.; Feng, T.; Wang, Y.; Qiu, Y. Chem Asian J. 2022, 17, e202200543.
[8]
(g) Villo, P.; Shatskiy, A.; K?rk?s, M. D.; Lundberg, H. Angew. Chem., Int. Ed. 2023, 62, e202211952.
[8]
(h) Pan, Y.; Meng, X.; Wang, Y.; He, M. Chin. J. Org. Chem. 2023, 43, 1416. (in Chinese)
[8]
(潘永周, 蒙秀金, 王迎春, 何慕雪, 有机化学, 2023, 43, 1416.)
[9]
Luo, J.; Larrosa, I. ChemSusChem 2017, 10, 3317.
[10]
Sun, G.-Q.; Yu, P.; Zhang, W.; Zhang, W.; Wang, Y.; Liao, L.-L.; Zhang, Z.; Li, L.; Lu, Z.; Yu, D.-G.; Lin, S. Nature 2023, 615, 67.
[11]
Zhao, Z.; Liu, Y.; Wang, S.; Tang, S.; Ma, D.; Zhu, Z.; Guo, C.; Qiu, Y. Angew. Chem., Int. Ed. 2023, 62, e202214710.
[12]
(a) Senboku, H.; Yamauchi, Y.; Fukuhara, T.; Hara, S. Electrochemistry 2006, 74, 612.
[12]
(b) Pradhan, S.; Das, S. Synlett 2023, 34, 1327.
[13]
Muchez, L.; Vos, D. E. D.; Kim, M. J. ACS Sustainable Chem. Eng. 2019, 7, 15860.
[14]
Zhang, S.; Li, X.; He, L.-N. Acta Chim. Sinica 2016, 74, 17. (in Chinese)
[14]
(张帅, 李雪冬, 何良年, 化学学报, 2016, 74, 17.)
[15]
Liao, L.-L.; Wang, Z.-H.; Cao, K.-G.; Sun, G.-Q.; Zhang, W.; Ran, C.-K.; Li, Y.; Chen, L.; Cao, G.-M.; Yu, D.-G. J. Am. Chem. Soc. 2022, 144, 2062.
[16]
Zhao, B.; Pan, Z.; Pan, J.; Deng, H.; Bu, X.; Ma, M.; Xue, F. Green Chem. 2023, 25, 3095.
[17]
Liu, X.-F.; Zhang, K.; Wang, L.-L.; Wang, H.; Huang, J.; Zhang, X.-T.; Lu, X.-B.; Zhang, W.-Z. J. Org. Chem. 2023, 88, 5212.
[18]
(a) Qiu, Z.; Li, C. J. Chem. Rev. 2020, 120, 10454.
[18]
(b) Boit, T. B.; Bulger, A. S.; Dander, J. E.; Garg, N. K. ACS Catal. 2020, 10, 12109.
[19]
Jiao, K.-J.; Li, Z.-M. Xu, X.-T.; Zhang, L.-P.; Li, Y.-Q.; Zhang, K. Mei, T.-S. Org. Chem. Front. 2018, 5, 2244.
[20]
(a) Lin, Q.; Li, L.; Luo, S. Chem. Eur. J. 2019, 25, 10033.
[20]
(b) Wang, X.; Xu, X.; Wang, Z.; Fang, P.; Mei, T. Chin. J. Org. Chem. 2020, 40, 3738. (in Chinese)
[20]
(王向阳, 徐学涛, 王振华, 方萍, 梅天胜, 有机化学, 2020, 40, 3738.)
[20]
(c) Chang, X.; Zhang, Q.; Guo, C. Angew. Chem., Int. Ed. 2020, 59, 12612.
[20]
(d) Li, H.; Xue, Y.-F.; Ge, Q.; Liu, M.; Cong, H.; Tao, Z. Mol. Catal. 2021, 499, 111296.
[20]
(e) Jiao, K. J.; Wang, Z.-H.; Ma, C.; Liu, H.-L.; Cheng, B.; Mei, T.-S. Chem Catal. 2022, 2, 3019.
[20]
(f) Wang, H.; Li, M.-H.; Liu, H.; Wang, Y.-L.; Zhu, J.-W.; Lu, J.-X. ChemCatChem 2024, 16, e202301593.
[20]
(g) Gao, C.; Liu, X.; Wang, M.; Liu, S.; Zhu, T.; Zhang, Y.; Hao, E.; Yang, Q. Chin. J. Org. Chem. 2024, 44, 673. (in Chinese)
[20]
(高淳, 刘欣, 王明慧, 刘淑贤, 朱婷婷, 张怡康, 郝二军, 杨启亮, 有机化学, 2024, 44, 673.)
[21]
Zhao, R.; Lin, Z.; Maksso, I.; Struwe, J.; Ackermann, L. ChemElectroChem 2022, 9, e202200989.
[22]
Qin, J.-H.; Xiong, Z.-Q.; Cheng, C.; Hu, M.; Li, J.-H. Org. Lett. 2023, 25, 9176.
[23]
Hu, Q.; Wei, B.; Wang, M.; Liu, M.; Chen, X.-W.; Ran, C.-K.; Wang, G.; Chen, Z.; Li, H.; Song, J.; Yu, D.-G.; Guo, C. J. Am. Chem. Soc. 2024, 146, 14864.
[24]
Senboku, H.; Sakai, K.; Fukui, A.; Sato, Y.; Yamauchi, Y. ChemElectroChem 2019, 6, 4158.
[25]
Liu, X.; Wang, H.; Tao, L.; Ren, W.; Lu, X.; Zhang, W. Acta Phys.-Chim. Sin. 2024, 40, 2307008.
[26]
Senboku, H.; Yoneda, K.; Hara, S. Tetrahedron Lett. 2015, 56, 6772.
[27]
Hayama, M.; Senboku, H. Electrochemistry 2023, 91, 112011.
[28]
Kumar, S.; Singh, A. K. Green Chem. 2023, 25, 8516.
[29]
(a) Lan, D.-H.; Fan, N.; Wang, Y.; Gao, X.; Zhang, P.; Chen, L.; Au, C.-T.; Yin, S.-F. Chin. J. Catal. 2016, 37, 826.
[29]
(b) Gómez, J. E. A.; Kleij, W. Curr. Opin. Green Sustainable Chem. 2017, 3, 55.
[30]
Zhang, K.; Ren, B.-H.; Liu, X.-F.; Wang, L.-L.; Zhang, M.; Ren, W.-M.; Lu, X.-B.; Zhang, W.-Z. Angew. Chem., Int. Ed. 2022, 134, e202207660.
[31]
Wang, Y.; Tang, S.; Yang, G.; Wang, S.; Ma, D.; Qiu, Y. Angew. Chem., Int. Ed. 2022, 134, e202207746.
[32]
Tao, L.; Liu, X.-F.; Ren, B.-H.; Wang, H.; Sun, H.-Q.; Zhang, K.; Teng, Y.-Q.; Ren, W.-M.; Lu, X.-B.; Zhang, W.-Z. Org. Lett. 2024, 26, 542.
[33]
Tao, L.; Wang, H.; Liu, X.-F.; Ren, W.-M.; Lu, X.-B.; Zhang, W.-Z. Chem. Commun. 2024, 60, 5735.
[34]
Senboku, H.; Yoneda, K.; Hara, S. Electrochemistry 2013, 81,380382.
[35]
Gao, X.-T.; Zhang, Z.; Wang, X.; Tian, J.-S.; Xie, S.-L.; Zhou, F.; Zhou, J. Chem. Sci. 2020, 11, 10414.
[36]
(a) Xie, S.-L.; Gao, X.-T.; Wu, H.-H.; Zhou, F.; Zhou, J. Org. Lett. 2020, 22, 8424.
[36]
(b) Xie, S.-L.; Cui, X.-Y.; Gao, X.-T.; Zhou, F.; Wu, H.-H.; Zhou, J. Org. Chem. Front. 2019, 6, 3678.
[37]
Mondal, S.; Sarkar, S.; Wang, J. W.; Meanwell, M. W. Green Chem. 2023, 25, 9075.
文章导航

/