有机化学 ›› 2024, Vol. 44 ›› Issue (10): 3043-3062.DOI: 10.6023/cjoc202406045 上一篇 下一篇
综述与进展
高小童a,b,*(), 钟昱卿b, 冯楠b, 孙莹b, 杨得勇b, 周锋b,*()
收稿日期:
2024-06-28
修回日期:
2024-07-28
发布日期:
2024-09-10
基金资助:
Xiaotong Gaoa,b,*(), Yuqing Zhongb, Nan Fengb, Ying Sunb, Deyong Yangb, Feng Zhoub,*()
Received:
2024-06-28
Revised:
2024-07-28
Published:
2024-09-10
Contact:
*E-mail: Supported by:
文章分享
二氧化碳(CO2)是一种绿色可再生的C1合成子, 通过与惰性键的羧化反应, 能够实现从简单分子到高附加值羧酸衍生物的直接转化, 兼具步骤经济性与原子经济性. 有机电合成是利用电子作“试剂”的绿色合成技术, 发展电化学促进的惰性键与二氧化碳的羧化反应成为近年研究热点. 按照C—H、C—C、C—O、C—F键的分类, 综述了二氧化碳参与惰性键的电还原羧化反应的研究成果, 着重讨论了反应机理及应用, 并对该领域发展趋势进行了展望.
高小童, 钟昱卿, 冯楠, 孙莹, 杨得勇, 周锋. 惰性键与二氧化碳的电化学羧化反应研究[J]. 有机化学, 2024, 44(10): 3043-3062.
Xiaotong Gao, Yuqing Zhong, Nan Feng, Ying Sun, Deyong Yang, Feng Zhou. Recent Advances in Electrochemical Carboxylation of Inert Chemical Bonds with Carbon Dioxide[J]. Chinese Journal of Organic Chemistry, 2024, 44(10): 3043-3062.
[1] |
(a) He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52, 9620.
|
(b) Artz, J.; Mueller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow, A.; Leitner, W. Chem. Rev. 2018, 118, 434.
|
|
[2] |
(a) Aresta, M. Carbon Dioxide as Chemical Feedstock, Wiley- VCH, Weinheim, 2010.
|
(b) He, L. N. Carbon Dioxide Chemistry, Science Press, Beijing, 2013. (in Chinese)
|
|
(何良年, 二氧化碳化学, 科学出版社, 北京, 2013.)
|
|
(c) Lu, X. B. Carbon Dioxide and Organometallics, Cham, Switzerland, Springer, 2016.
|
|
(d) Liu, Z. M. Chemical Conversion of Carbon Dioxide, Science Press, Beijing, 2018. (in Chinese)
|
|
(刘志敏, 二氧化碳化学转化, 科学出版社, 北京, 2018.)
|
|
[3] |
(a) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
|
(b) Kleij, A. W.; North, M.; Urakawa, A. ChemSusChem 2017, 10, 1036.
|
|
(c) Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Chin. J. Chem. 2018, 36, 644.
|
|
(d) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382.
|
|
(e) Zhou, C.; Li, M.; Yu, J. T.; Sun, S.; Cheng, J. Chin. J. Org. Chem. 2020, 40, 2221. (in Chinese)
|
|
(周聪, 李渺, 于金涛, 孙松, 成江, 有机化学, 2020, 40, 2221.)
doi: 10.6023/cjoc202003039 |
|
(f) Shi, Y.; Pan, B.-W.; Zhou, Y.; Zhou, J.; Liu, Y.-L.; Zhou, F. Org. Biomol. Chem. 2020, 18, 8597.
|
|
(g) Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Acc. Chem. Res. 2021, 54, 2518.
|
|
(h) Ran, C.-K.; Liao, L.-L.; Gao, T.-Y.; Gui, Y.-Y.; Yu, D.-G. Curr. Opin. Green Sustainable Chem. 2021, 32, 100525.
|
|
(i) Wang, L.; Qi, C.; Xiong, W.; Jiang, H. Chin. J. Catal. 2022, 43, 1598.
|
|
[4] |
(a) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
|
(b) Bach, R. D.; Dmitrenko, O. J. Am. Chem. Soc. 2004, 126, 4444.
|
|
(c) Wren, S. W.; Vogelhuber, K. M.; Garver, J. M.; Kato, S.; Sheps, L.; Bierbaum, V. M.; Lineberger, W. C. J. Am. Chem. Soc. 2012, 134, 6584.
|
|
[5] |
(a) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
doi: 10.1039/b711844a pmid: 33017147 |
(b) Su, B.; Cao, Z.-C.; Shi, Z.-J. Acc. Chem. Res. 2015, 48, 886.
pmid: 33017147 |
|
(c) Dixneuf, P. H.; Doucet, H. C-H Bond Activation and Catalytic Functionalization I, Springer, Switzerland, 2016.
pmid: 33017147 |
|
(d) Shi, S.-H.; Liang, Y.; Jiao, N. Chem. Rev. 2021, 121, 485.
doi: 10.1021/acs.chemrev.0c00335 pmid: 33017147 |
|
(e) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
pmid: 33017147 |
|
(f) Wang, Z.; Sun, Y.; Shen, L.-Y.; Yang, W.-C.; Meng, F.; Li, P. Org. Chem. Front. 2022, 9, 853.
pmid: 33017147 |
|
(g) Gao, R.; Wen, L.; Guo, W. Chin. J. Org. Chem. 2024, 44, 892. (in Chinese)
pmid: 33017147 |
|
(高瑞林, 文丽荣, 郭维斯, 有机化学, 2024, 44, 892.)
doi: 10.6023/cjoc202309024 pmid: 33017147 |
|
[6] |
(a) Hong, J.; Li, M.; Zhang, J.; Sun, B.; Mo, F. ChemSusChem 2019, 12, 6.
pmid: 37928841 |
(b) Song, L.; Jiang, Y.-X.; Zhang, Z.; Gui, Y.-Y.; Zhou, X.-Y.; Yu, D.-G. Chem. Commun. 2020, 56, 8355.
pmid: 37928841 |
|
(c) Behmagham, F.; Abdullah, M. N.; Saied, S. M.; Azeez, M. D.; Abbass, R. R.; Adhab, A. H.; Vessally, E. RSC Adv. 2023, 13, 32502.
doi: 10.1039/d3ra04073a pmid: 37928841 |
|
[7] |
(a) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
|
(b) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
|
|
(c) Pollok, D.; Waldvogel, S. R. Chem. Sci. 2020, 11, 12386.
|
|
(d) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
|
|
(e) Yuan, Y.; Yang, Y.; Lei, A. Chem. Soc. Rev. 2021, 50, 10058.
|
|
(f) Cheng, X.; Lei, A.; Mei, T.-S.; Xu, H.-C.; Xu, K.; Zeng, C. CCS Chem. 2022, 4, 1120.
|
|
[8] |
(a) Pimparkar, S.; Dalvi, A. K.; Koodan, A.; Maiti, S.; Al-Thabaiti, S. A.; Mokhtar, M.; Dutta, A.; Lee, Y. R.; Maiti, D. Green Chem. 2021, 23, 9283.
|
(b) Senboku, H. Chem. Rec. 2021, 21, 2354.
|
|
(c) Yang, Z.; Yu, Y.; Lai, L.; Zhou, L.; Ye, K.; Chen, F.-E. Green Synth. Catal. 2021, 2, 19.
|
|
(d) Liu, X.-F.; Zhang, K.; Tao, L.; Lu, X.-B.; Zhang, W.-Z. Green Chem. Eng. 2022, 3, 125.
|
|
(e) Yu, Z.; Shi, M. Chem. Commun. 2022, 58, 13539.
|
|
(f) Wang, S.; Feng, T.; Wang, Y.; Qiu, Y. Chem Asian J. 2022, 17, e202200543.
|
|
(g) Villo, P.; Shatskiy, A.; Kärkäs, M. D.; Lundberg, H. Angew. Chem., Int. Ed. 2023, 62, e202211952.
|
|
(h) Pan, Y.; Meng, X.; Wang, Y.; He, M. Chin. J. Org. Chem. 2023, 43, 1416. (in Chinese)
|
|
(潘永周, 蒙秀金, 王迎春, 何慕雪, 有机化学, 2023, 43, 1416.)
doi: 10.6023/cjoc202208004 |
|
[9] |
Luo, J.; Larrosa, I. ChemSusChem 2017, 10, 3317.
|
[10] |
Sun, G.-Q.; Yu, P.; Zhang, W.; Zhang, W.; Wang, Y.; Liao, L.-L.; Zhang, Z.; Li, L.; Lu, Z.; Yu, D.-G.; Lin, S. Nature 2023, 615, 67.
|
[11] |
Zhao, Z.; Liu, Y.; Wang, S.; Tang, S.; Ma, D.; Zhu, Z.; Guo, C.; Qiu, Y. Angew. Chem., Int. Ed. 2023, 62, e202214710.
|
[12] |
(a) Senboku, H.; Yamauchi, Y.; Fukuhara, T.; Hara, S. Electrochemistry 2006, 74, 612.
|
(b) Pradhan, S.; Das, S. Synlett 2023, 34, 1327.
|
|
[13] |
Muchez, L.; Vos, D. E. D.; Kim, M. J. ACS Sustainable Chem. Eng. 2019, 7, 15860.
|
[14] |
Zhang, S.; Li, X.; He, L.-N. Acta Chim. Sinica 2016, 74, 17. (in Chinese)
doi: 10.6023/A15090631 |
(张帅, 李雪冬, 何良年, 化学学报, 2016, 74, 17.)
doi: 10.6023/A15090631 |
|
[15] |
Liao, L.-L.; Wang, Z.-H.; Cao, K.-G.; Sun, G.-Q.; Zhang, W.; Ran, C.-K.; Li, Y.; Chen, L.; Cao, G.-M.; Yu, D.-G. J. Am. Chem. Soc. 2022, 144, 2062.
|
[16] |
Zhao, B.; Pan, Z.; Pan, J.; Deng, H.; Bu, X.; Ma, M.; Xue, F. Green Chem. 2023, 25, 3095.
|
[17] |
Liu, X.-F.; Zhang, K.; Wang, L.-L.; Wang, H.; Huang, J.; Zhang, X.-T.; Lu, X.-B.; Zhang, W.-Z. J. Org. Chem. 2023, 88, 5212.
|
[18] |
(a) Qiu, Z.; Li, C. J. Chem. Rev. 2020, 120, 10454.
|
(b) Boit, T. B.; Bulger, A. S.; Dander, J. E.; Garg, N. K. ACS Catal. 2020, 10, 12109.
|
|
[19] |
Jiao, K.-J.; Li, Z.-M. Xu, X.-T.; Zhang, L.-P.; Li, Y.-Q.; Zhang, K. Mei, T.-S. Org. Chem. Front. 2018, 5, 2244.
|
[20] |
(a) Lin, Q.; Li, L.; Luo, S. Chem. Eur. J. 2019, 25, 10033.
|
(b) Wang, X.; Xu, X.; Wang, Z.; Fang, P.; Mei, T. Chin. J. Org. Chem. 2020, 40, 3738. (in Chinese)
|
|
(王向阳, 徐学涛, 王振华, 方萍, 梅天胜, 有机化学, 2020, 40, 3738.)
doi: 10.6023/cjoc202003022 |
|
(c) Chang, X.; Zhang, Q.; Guo, C. Angew. Chem., Int. Ed. 2020, 59, 12612.
|
|
(d) Li, H.; Xue, Y.-F.; Ge, Q.; Liu, M.; Cong, H.; Tao, Z. Mol. Catal. 2021, 499, 111296.
|
|
(e) Jiao, K. J.; Wang, Z.-H.; Ma, C.; Liu, H.-L.; Cheng, B.; Mei, T.-S. Chem Catal. 2022, 2, 3019.
|
|
(f) Wang, H.; Li, M.-H.; Liu, H.; Wang, Y.-L.; Zhu, J.-W.; Lu, J.-X. ChemCatChem 2024, 16, e202301593.
|
|
(g) Gao, C.; Liu, X.; Wang, M.; Liu, S.; Zhu, T.; Zhang, Y.; Hao, E.; Yang, Q. Chin. J. Org. Chem. 2024, 44, 673. (in Chinese)
|
|
(高淳, 刘欣, 王明慧, 刘淑贤, 朱婷婷, 张怡康, 郝二军, 杨启亮, 有机化学, 2024, 44, 673.)
doi: 10.6023/cjoc202402005 |
|
[21] |
Zhao, R.; Lin, Z.; Maksso, I.; Struwe, J.; Ackermann, L. ChemElectroChem 2022, 9, e202200989.
|
[22] |
Qin, J.-H.; Xiong, Z.-Q.; Cheng, C.; Hu, M.; Li, J.-H. Org. Lett. 2023, 25, 9176.
|
[23] |
Hu, Q.; Wei, B.; Wang, M.; Liu, M.; Chen, X.-W.; Ran, C.-K.; Wang, G.; Chen, Z.; Li, H.; Song, J.; Yu, D.-G.; Guo, C. J. Am. Chem. Soc. 2024, 146, 14864.
|
[24] |
Senboku, H.; Sakai, K.; Fukui, A.; Sato, Y.; Yamauchi, Y. ChemElectroChem 2019, 6, 4158.
|
[25] |
Liu, X.; Wang, H.; Tao, L.; Ren, W.; Lu, X.; Zhang, W. Acta Phys.-Chim. Sin. 2024, 40, 2307008.
|
[26] |
Senboku, H.; Yoneda, K.; Hara, S. Tetrahedron Lett. 2015, 56, 6772.
|
[27] |
Hayama, M.; Senboku, H. Electrochemistry 2023, 91, 112011.
|
[28] |
Kumar, S.; Singh, A. K. Green Chem. 2023, 25, 8516.
|
[29] |
(a) Lan, D.-H.; Fan, N.; Wang, Y.; Gao, X.; Zhang, P.; Chen, L.; Au, C.-T.; Yin, S.-F. Chin. J. Catal. 2016, 37, 826.
|
(b) Gómez, J. E. A.; Kleij, W. Curr. Opin. Green Sustainable Chem. 2017, 3, 55.
|
|
[30] |
Zhang, K.; Ren, B.-H.; Liu, X.-F.; Wang, L.-L.; Zhang, M.; Ren, W.-M.; Lu, X.-B.; Zhang, W.-Z. Angew. Chem., Int. Ed. 2022, 134, e202207660.
|
[31] |
Wang, Y.; Tang, S.; Yang, G.; Wang, S.; Ma, D.; Qiu, Y. Angew. Chem., Int. Ed. 2022, 134, e202207746.
|
[32] |
Tao, L.; Liu, X.-F.; Ren, B.-H.; Wang, H.; Sun, H.-Q.; Zhang, K.; Teng, Y.-Q.; Ren, W.-M.; Lu, X.-B.; Zhang, W.-Z. Org. Lett. 2024, 26, 542.
doi: 10.1021/acs.orglett.3c04007 pmid: 38189289 |
[33] |
Tao, L.; Wang, H.; Liu, X.-F.; Ren, W.-M.; Lu, X.-B.; Zhang, W.-Z. Chem. Commun. 2024, 60, 5735.
|
[34] |
Senboku, H.; Yoneda, K.; Hara, S. Electrochemistry 2013, 81,380382.
|
[35] |
Gao, X.-T.; Zhang, Z.; Wang, X.; Tian, J.-S.; Xie, S.-L.; Zhou, F.; Zhou, J. Chem. Sci. 2020, 11, 10414.
|
[36] |
(a) Xie, S.-L.; Gao, X.-T.; Wu, H.-H.; Zhou, F.; Zhou, J. Org. Lett. 2020, 22, 8424.
|
(b) Xie, S.-L.; Cui, X.-Y.; Gao, X.-T.; Zhou, F.; Wu, H.-H.; Zhou, J. Org. Chem. Front. 2019, 6, 3678.
|
|
[37] |
Mondal, S.; Sarkar, S.; Wang, J. W.; Meanwell, M. W. Green Chem. 2023, 25, 9075.
|
[1] | 李文多, 魏娜娜, 冯楠. 硼自由基促进的C—C键形成反应构筑联芳基和苄基羧酸甲酯[J]. 有机化学, 2024, 44(6): 1853-1861. |
[2] | 夏坤, 张开发, Sher Wali Khan, 阿布力米提•阿布都卡德尔. 二氧化碳参与的三组分偶联反应进展[J]. 有机化学, 2024, 44(5): 1506-1525. |
[3] | 段东森, 马媛, 刘宇博, 程富, 朱道勇, 王少华. 可见光诱导的二氧化碳对活化烯烃的脱碳羧基化反应[J]. 有机化学, 2024, 44(5): 1675-1685. |
[4] | 姜晓琳, 王超洋, 武利园, 李跃辉. 含咔唑结构的小分子及聚合物催化二氧化碳转化研究进展[J]. 有机化学, 2024, 44(5): 1423-1444. |
[5] | 朱子乐, 李鹏飞, 仇友爱. 电化学芳烃C(sp2)—H胺化反应的研究进展[J]. 有机化学, 2024, 44(3): 871-891. |
[6] | 陈红斌, 杨思佳, 叶智鹏, 陈凯, 向皞月, 阳华. 以路易斯碱硼烷为氢供体电催化还原喹啉及酮[J]. 有机化学, 2024, 44(3): 966-971. |
[7] | 叶增辉, 刘华清, 张逢质. 有机光电催化合成研究进展[J]. 有机化学, 2024, 44(3): 840-870. |
[8] | 周兰, 何红, 杨德巧, 侯中伟, 王磊. N-苄基丙烯酰胺的电化学三氟甲基化/螺环化合成三氟甲基取代2-氮杂螺[4.5]癸烷[J]. 有机化学, 2024, 44(3): 981-988. |
[9] | 吴际伟, 何俊, 王晶晶, 李丽霞, 徐采玉, 周洁, 李子荣, 许华建. 电化学氧化α-酮酸与邻氨基苄胺的脱羧环化反应[J]. 有机化学, 2024, 44(3): 972-980. |
[10] | 吕帅, 朱钢国, 姚金忠, 周宏伟. 电化学介导的氧化羧化及二氧化碳还原羧化制备羧酸的研究进展[J]. 有机化学, 2024, 44(3): 780-808. |
[11] | 李章健, 王振华, 郭剑峰, 方萍, 马聪, 刘润华, 梅天胜. 电化学促进2,2,6,6-四甲基哌啶氧化物(TEMPO)介导的甘氨酸衍生物氧化脱氢Povarov/串联反应[J]. 有机化学, 2024, 44(3): 940-950. |
[12] | 方新月, 黄雅雯, 胡新伟, 阮志雄. 电化学修饰氨基酸和多肽类化合物的研究进展[J]. 有机化学, 2024, 44(3): 903-926. |
[13] | 李梦帆, 程旭. 烯丙基芳香化合物的电化学选择性氧化酯化[J]. 有机化学, 2024, 44(3): 1005-1012. |
[14] | 何蔺恒, 夏稳, 周玉祥, 于贤勇. 电催化N-芳基甘氨酸和苯并[e][1,2,3]噁噻嗪-2,2-二氧化物的串联脱羧环化反应[J]. 有机化学, 2024, 44(3): 997-1004. |
[15] | 孙雪, 颜廷涛, 闫克鲁, 杨建静, 文江伟. 电化学促使α-重氮酯的磷酸化构筑亚膦酸腙[J]. 有机化学, 2024, 44(3): 1013-1020. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||