研究论文

新型苯基吡唑类衍生物的设计、合成和杀虫活性研究

  • 田海平 ,
  • 刘东东 ,
  • 裴鸿艳 ,
  • 叶家麟 ,
  • 郑子锐 ,
  • 高一星 ,
  • 李昌兴 ,
  • 田欢 ,
  • 张静 ,
  • 张立新
展开
  • a 沈阳化工大学功能分子研究所 沈阳 110142
    b 辽宁科技大学化学工程学院 辽宁鞍山 114051
    c 沈阳工业大学材料科学与工程学院 沈阳 110870
    d 广西思钺生物科技有限责任公司 南宁 530000
†共同第一作者

收稿日期: 2024-05-16

  修回日期: 2024-08-05

  网络出版日期: 2024-09-19

基金资助

国家自然科学基金(22277081); 辽宁省自然科学基金计划(2022-KF-15-04); 辽宁省“揭榜挂帅”科技攻关计划(2022JH1/10400018)

Design, Synthesis and Insecticidal Activity of New Phenylpyrazole Derivatives

  • Haiping Tian ,
  • Dongdong Liu ,
  • Hongyan Pei ,
  • Jialin Ye ,
  • Zirui Zheng ,
  • Yixing Gao ,
  • Changxing Li ,
  • Huan Tian ,
  • Jing Zhang ,
  • Lixin Zhang
Expand
  • a Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142
    b School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning 114051
    c School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870
    d Guangxi Siyue Biotechnology Co., Ltd., Nanning 530000
†These authors contributed equally to this work.

Received date: 2024-05-16

  Revised date: 2024-08-05

  Online published: 2024-09-19

Supported by

National Natural Science Foundation of China(22277081); Natural Science Foundation Program of Liaoning Province(2022-KF-15-04); “Jiebang Guashuai” Science and Technology Tackling Plan of Liaoning Province(2022JH1/10400018)

摘要

为了发现具有良好生物活性的苯基吡唑类杀虫杀螨剂, 以杀虫杀螨剂(Nicofluprole)为先导化合物, 通过生物电子等排、活性亚结构拼接等设计策略, 设计并合成了25个新型苯基吡唑类似物. 采用1H NMR、13C NMR和HRMS对目标化合物进行了确认. 通过对朱砂叶螨(Tetranychus cinnabarinus)、桃蚜(Myzus persicae)、小菜蛾(Plutella xylostella)杀虫活性的初筛和复筛, 初步探讨了构效关系. 其中1-(2-氯-5-(1-(2,6-二氯-4-(七氟异丙烷-2-基)苯基)-1H-吡唑-4-基)烟酰胺)环丙烷-1-羧酸甲酯(8e)在2.5 mg/L时显示出对朱砂叶螨100%的杀螨率, 5-(1-(2-溴-6-氯-4-(七氟异丙烷-2-基)苯基)-1H-吡唑-4-基)-2-氯-N-环丙基烟酰胺(8i)在5 mg/L时显示出对桃蚜100%的杀虫率, 2-氯-N-环丙基-5-(1-(2,6-二氯- 4-(七氟异丙烷-2-基)苯基)-1H-吡唑-4-基)-N-甲基苯甲酰胺(8a)、2-氯-N-环丙基-5-(1-(2,6-二氯-4-(七氟异丙烷-2-基)苯基)-1H-吡唑-4-基)苯甲酰胺(8b)、8i在2.5 mg/L时显示出对小菜蛾100%的杀虫率. 分子对接结果表明, 化合物8e的杀螨活性的提升原因可能是酯基的引入导致相应的氢键作用增加. 本研究对新型苯基吡唑类杀虫杀螨剂的进一步优化和开发具有指导意义.

本文引用格式

田海平 , 刘东东 , 裴鸿艳 , 叶家麟 , 郑子锐 , 高一星 , 李昌兴 , 田欢 , 张静 , 张立新 . 新型苯基吡唑类衍生物的设计、合成和杀虫活性研究[J]. 有机化学, 2025 , 45(1) : 227 -239 . DOI: 10.6023/cjoc202405024

Abstract

To enhance the discovery of phenylpyrazole-based insecticides and acaricides with superior biological activity, leveraging the insecticide and acaricide of Nicoflurole as a lead compound, 25 novel phenylpyrazole analogues were designed and synthesized through the design strategies of bioelectronic rearrangement and active substructures splicing. The target compounds were confirmed by 1H NMR, 13C NMR and HRMS. The insecticidal activities against Tetranychus cinnabarinus, Myzus persicae, and Plutella xylostella were preliminarily screened and rescreened to preliminarily explore structure-activity relationship. Among them, methyl 1-(2-chloro-5-(1-(2,6-dichloro-4-(perfluoropropan-2-yl)phenyl)-1H-pyrazol-4-yl)nicotin- amido)cyclopropane-1-carboxylate (8e) showed 100% mite killing efficacy against Tetranychus cinnabarinus at 2.5 mg/L. 5-(1-(2-Bromo-6-chloro-4-(perfluoropropan-2-yl)phenyl)-1H-pyrazol-4-yl)-2-chloro-N-cyclopropylnicotinamide (8i) exhibited an insecticidal efficacy of 100% against Myzus persicae at 5 mg/L. 2-Chloro-N-cyclopropyl-5-(1-(2,6-dichloro-4-(perfluoro-propan-2-yl)phenyl)-1H-pyrazol-4-yl)-N-methylbenzamide (8a), 2-chloro-N-cyclopropyl-5-(1-(2,6-dichloro-4-(perfluoropro- pan-2-yl)phenyl)-1H-pyrazol-4-yl)benzamide (8b), and 8i demonstrated an insecticidal efficacy of 100% against Plutella xylostella at 2.5 mg/L. Molecular docking studies indicated that the enhancement of 8e acaricidal activity may be due to the incorporation of ester groups leading to an increase in corresponding hydrogen bonding interactions. This study provides valuable insights for the continued optimization and development of novel phenylpyrazole insecticides and acaricides.

参考文献

[1]
Chen, D. Y.; Hao, G. F.; Song, B. A. J. Agric. Food Chem. 2022, 70, 10090.
[2]
Liu, D. D.; Zhu, C.; Wang, F.; Gao, Y. X.; Zhang, J.; Zhang, L. X. Chem. Reagents 2022, 44, 21 (in Chinese).
[2]
(刘东东, 朱晨, 王峰, 高一星, 张静, 张立新, 化学试剂, 2022, 44, 21.)
[3]
Zhang, C. X.; Yuan, H. X.; Hu, Y. G.; Li, X. H.; Gao, Y. Q.; Ma, Z. Q.; Lei, P. J. Agric. Food Chem. 2023, 71, 3184.
[4]
Li, Y. H.; Li, S. C.; Yin, X.; Liu, S. L. Pest Manage. Sci. 2024, 80, 1654.
[5]
Liu, Y. H.; Li, C. K.; Nie, M. Y.; Wang, F. L.; Ren, X. L.; Jin, L. H.; Zhou, X. BMC Chem. 2024, 18, 46.
[6]
Liu, D. D.; Bi, Q. J.; Zhang, J.; Gao, Y. X.; Luo, C. F.; Tian, H.; He, J.; Zhang, L. X. Bioorg. Chem. 2024, 143, 107024.
[7]
Subbaiah, M. A. M.; Meanwell, N. A. J. Med. Chem. 2021, 64, 14046.
[8]
Chen, M. J.; Li, Z.; Shao, X. S.; Maienfisch, P. J. Agric. Food Chem. 2022, 70, 11123.
[9]
Lamberth, C. J. Agric. Food Chem. 2023, 71, 18123.
[10]
Popsavin, M.; Djokic, S.; Kovacevic, I.; Stanisavljevic, S. M.; Kojic, V.; Rodic, M. V.; Aleksic, L.; Kesic, J.; Sreco Zelenovic, B.; Popsavin, V.; Jakimov, D. S. Eur. J. Med. Chem. 2024, 269, 116340.
[11]
Luo, C. Y.; Ma, W. J.; Lv, L.; Pang, H. L.; Xiang, J. C.; Zhou, L. Q.; Yin, D. L.; Liu, J. Y. Chin. J. Org. Chem. 2020, 40, 2963 (in Chinese).
[11]
(罗春艳, 马文静, 吕亮, 庞怀林, 相君成, 周丽琪, 尹笃林, 刘吉永, 有机化学, 2020, 40, 2963.)
[12]
Nakao, T.; Banba, S. Bioorg. Med. Chem. 2016, 24, 372.
[13]
Furuya, T.; Suwa, A.; Nakano, M.; Fujioka, S.; Yasokawa, N.; Machiya, K. J. Pestic. Sci. (Tokyo, Jpn.) 2015, 40, 38.
[14]
Li, Q. B.; Liao, M.; Liu, Q.; Feng, T.; Xu, Z. Y.; Rui, C. H.; Liu, S. Z. Molecules 2019, 24, 562.
[15]
Bollini, M.; Casal, J. J.; Alvarez, D. E.; Boiani, L.; González, M.; Cerecetto, H.; Bruno, A. M. Bioorg. Med. Chem. 2009, 17, 1437.
[16]
Ingrassia, L.; Lefranc, F.; Dewelle, J.; Pottier, L.; Mathieu, V.; Spiegl-Kreinecker, S.; Sauvage, S.; El Yazidi, M.; Dehoux, M.; Berger, W.; Van Quaquebeke, E.; Kiss, R. J. Med. Chem. 2009, 52, 1100.
[17]
Ma, Y. M.; Qiao, K.; Kong, Y.; Li, M. Y.; Guo, L. X.; Miao, Z.; Fan, C. Nat. Prod. Res. 2017, 31, 951.
[18]
Karche, N. P.; Bhonde, M.; Sinha, N.; Jana, G.; Kukreja, G.; Kurhade, S. P.; Jagdale, A. R.; Tilekar, A. R.; Hajare, A. K.; Jadhav, G. R.; Gupta, N. R.; Limaye, R.; Khedkar, N.; Thube, B. R.; Shaikh, J. S.; Rao Irlapati, N.; Phukan, S.; Gole, G.; Bommakanti, A.; Khanwalkar, H.; Pawar, Y.; Kale, R.; Kumar, R.; Gupta, R.; Praveen Kumar, V. R.; Wahid, S.; Francis, A.; Bhat, T.; Kamble, N.; Patil, V.; Nigade, P. B.; Modi, D.; Pawar, S.; Naidu, S.; Volam, H.; Pagdala, V.; Mallurwar, S.; Goyal, H.; Bora, P.; Ahirrao, P.; Singh, M.; Kamalakannan, P.; Naik, K. R.; Kumar, P.; Powar, R. G.; Shankar, R. B.; Bernstein, P. R.; Gundu, J.; Nemmani, K.; Narasimham, L.; George, K. S.; Sharma, S.; Bakhle, D.; Kamboj, R. K.; Palle, V. P. Bioorg. Med. Chem. 2020, 28, 115819.
[19]
Kumar Pandey, S.; Yadava, U.; Upadhyay, A.; Sharma, M. L. Bioorg. Chem. 2021, 108, 104611.
[20]
Tran, H. T.; Vu, O. N. T.; Le, T. N. T.; Nguyen, B. D. C.; Vo, N. N. Appl. Sci. 2022, 12, 2710.
[21]
Shao, X. S.; Fu, H.; Xu, X. Y.; Xu, X. L.; Liu, Z. W.; Li, Z.; Qian, X. H. J. Agric. Food Chem. 2010, 58, 2696.
[22]
Lamberth, C. J. Agric. Food Chem. 2023, 71, 18133.
[23]
Yao, G. K.; Wang, M. F.; Li, B. J.; Peng, H. X.; Yang, S.; Zhao, C.; Xu, H. H. Pest Manage. Sci. 2023, 79, 1164.
[24]
Bissantz, C.; Kuhn, B.; Stahl, M. J. Med. Chem. 2010, 53, 5061.
[25]
Xu, Z.; Liu, Z.; Chen, T.; Chen, T.; Wang, Z.; Tian, G.; Shi, J.; Wang, X.; Lu, Y.; Yan, X.; Wang, G.; Jiang, H.; Chen, K.; Wang, S.; Xu, Y.; Shen, J.; Zhu, W. J. Med. Chem. 2011, 54, 5607.
[26]
Ferreira de Freitas, R.; Schapira, M. MedChemComm 2017, 8, 1970.
文章导航

/