研究论文

可见光促进烯烃与丙二酸酯、CO2的碳-羧化反应研究

  • 张澳龙 ,
  • 杨晗 ,
  • 程佩栋 ,
  • 姚阳 ,
  • 孙松
展开
  • 常州大学石油化工学院 江苏省先进催化与绿色制造协同创新中心 江苏常州 213164

收稿日期: 2024-06-27

  修回日期: 2024-09-05

  网络出版日期: 2024-09-19

基金资助

国家自然科学基金(21602019); 环保功能吸附材料制备技术国地联合工程实验室开放基金(SDGC2125)

Visible-Light Photoredox-Catalyzed Carbon/Carboxylation of Alkenes with Malonates and CO2

  • Aolong Zhang ,
  • Han Yang ,
  • Peidong Cheng ,
  • Yang Yao ,
  • Song Sun
Expand
  • Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164

Received date: 2024-06-27

  Revised date: 2024-09-05

  Online published: 2024-09-19

Supported by

National Natural Science Foundation of China(21602019); National Local Joint Engineering Laboratory to Functional Adsorption Material Technology for the Environmental Protection(SDGC2125)

摘要

发展了一种在可见光促进条件下, 活化烯烃与丙二酸酯、CO2的碳-羧化反应, 能够在温和的反应条件下, 以较高的收率得到一系列结构多样的1,1,3-三羧酸酯化合物. 该反应具有良好的底物适应性, 1,1-二芳基烯烃、单芳基烯烃以及连有重要药物分子片段的烯烃都能很好地兼容反应. 该反应以CO2为羧基源, 为三羧酸酯类化合物的合成提供了一个绿色、简洁高效的合成方法.

本文引用格式

张澳龙 , 杨晗 , 程佩栋 , 姚阳 , 孙松 . 可见光促进烯烃与丙二酸酯、CO2的碳-羧化反应研究[J]. 有机化学, 2024 , 44(10) : 3159 -3168 . DOI: 10.6023/cjoc202406038

Abstract

A photoredox-catalyzed cascade carbon/carboxylation of activated alkenes with malonates acetals and CO2 has been achieved, leading to a range of functionalized 1,1,3-tricarboxylates in good efficiency under mild reaction conditions. This reaction provides a facile and sustainable method for the synthesis of tricarboxylates by using CO2 as the carboxylic source.

参考文献

[1]
For selected typical reviews, please see: (a) Sakakura, T.; Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365.
[1]
(b) He, M.; Sun, Y.; Han, B. Angew. Chem. Int. Ed. 2022, 61, e202112835.
[1]
(c) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. Angew. Chem. Int. Ed. 2011, 50, 8510.
[1]
(d) Jia, S.; Ma, X.; Sun, X.; Han, B. CCS Chem. 2022, 4, 3213.
[2]
(a) Qiu, L.-Q.; Yao, X.; Zhang, Y.-K.; Li, H.-R.; He, L.-N. J. Org. Chem. 2023, 88, 4942.
[2]
(b) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382.
[2]
(c) Pimparkar, S.; Dalvi, A. K.; Koodan, A.; Maiti, S.; Al-Thabaiti, S.; Mokhtar, M.; Dutta, A.; Lee, Y. R.; Maiti, D. Green Chem. 2021, 23, 9283.
[2]
(d) Guo, Y.; Wei, L.; Wen, Z.; Qi, C.; Jiang, H. Acta Phys.-Chim. Sin. 2024, 40, 2307004.
[2]
(e) Wang, Q.; Wang, Y.; Liu, M.; Chu, G.; Qiu, Y. Chin. J. Chem. 2024, 42, 2249.
[2]
(f) Lanzia, M.; Kleij, A. W. Chin. J. Chem. 2024, 42, 430.
[2]
(g) Sekine, K.; Yamada, T. Chem. Soc. Rev. 2016, 45, 4524.
[2]
(f) Li, Y.; Cui, X.; Dong, K.; Junge, K.; Beller, M. ACS Catal. 2017, 7, 1077.
[2]
(g) Darensbourg, D. J. Chem. Rev. 2007, 107, 2388.
[3]
For selected typical reviews, please see: (a) Wang, S.; Du, G.; Xi, C. Org. Biomol. Chem. 2016, 14, 3666.
[3]
(b) Mao, B.; Wei, J.-S.; Shi, M. Chem. Commun. 2022, 58, 9312.
[3]
(c) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
[3]
For selected typical examples, please see: (d) Jiang, Y.-X.; Liao, L.-L.; Gao, T.-Y.; Xu, W.-H.; Zhang, W.; Song, L.; Sun, G.-Q.; Ye, J.-H.; Lan, Y.; Yu, D.-G. Nat. Synth. 2024, 3, 394.
[3]
(e) Yu, B.; Liu, Y.; Xiao, H.-Z.; Li, C.-F.; Ye, J.-H.; Yu, D.-G. Chem. 2024, 10, 938.
[3]
(f) Sun, G.-Q.; Yu, P.; Zhang, W.; Zhang, W.; Wang, Y.; Liao, L.-L.; Zhang, Z.; Li, L.; Lu, Z.; Yu, D.-G.; Lin, S. Nature 2023, 615, 67.
[3]
(g) Zhang, K.; Ren, B.-H.; Liu, X.-F.; Wang, L.-L.; Zhang, M.; Ren, W.-M.; Lu, X.-B.; Zhang, W.-Z. Angew. Chem., Int. Ed. 2022, e202207660.
[3]
(h) Yuan, P.-F.; Yang, Z.; Zhang, S.-S.; Zhu, C.-M.; Yang, X.-L.; Meng, Q.-Y. Angew. Chem., Int. Ed. 2023, e202313030.
[3]
(i) Sha, Y.; Bai, J.; Li, M.; Gao, W.; Yang, Q.; Sun, J.; Sun, S. Org. Lett. 2022, 24, 5715.
[4]
(a) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2008, 47, 5792.
[4]
(b) Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130, 7826.
[5]
(a) Manjolinho, F.; Arndt, M.; Goo?en, K.; Goo?en, L. J. ACS Catal. 2012, 2, 2014.
[5]
(b) Schmalzbauer, M.; Svejstrup, T. D.; Fricke, F.; Brandt, P.; Johansson, M. J.; Bergonzini, G.; K?nig, B. Chem 2020, 6, 2658.
[5]
(c) Wang, L.; Wu, H.; Zhao, Y.; Li, B.; Wang, B. Org. Lett. 2024, 26, 3940.
[5]
(d) Mizuno, H.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133, 1251.
[5]
(e) Meng, Q.-Y.; Schirmer, T. E.; Berger, A. L.; Donabauer, K.; K?nig, B. J. Am. Chem. Soc. 2019, 141, 11393.
[5]
(f) Sahoo, H.; Zhang, L.; Cheng, J.; Nishiura, M.; Hou, Z. J. Am. Chem. Soc. 2022, 144, 23585.
[6]
(a) Tortajada, A.; B?rjesson, M.; Martin, R. Acc. Chem. Res. 2021, 54, 3941.
[6]
(b) Chen, X.-W.; Li, C.; Gui, Y.-Y.; Yue, J.-P.; Zhou, Q.; Liao, L.-L.; Yang, J.-W.; Ye, J.-H.; Yu, D.-G. Angew. Chem., Int. Ed. 2024, e202403401.
[6]
(c) Chen, X.-W.; Yue, J.-P.; Wang, K.; Gui, Y.-Y.; Niu, Y.-N.; Liu, J.; Ran, C.-K.; Kong, W.; Zhou, W.-J.; Yu, D.-G. Angew. Chem., Int. Ed. 2021, 60, 14068.
[6]
(d) Davies, J.; Lyonnet, J. R.; Carvalho, B.; Sahoo, B.; Day, C. S.; Juliá-Hernández, F.; Duan, Y.; Velasco-Rubio, á.; Obst, M.; Norrby, P.-O.; Hopmann, K. H.; Martin, R. J. Am. Chem. Soc. 2024, 146, 1753.
[6]
(e) Tang, S.; Liu, Z.; Zhang, J.; Li, B.; Wang, B. Angew. Chem., Int. Ed. 2024, e202318572.
[7]
(a) Xiong, W.; Shi, F.; Cheng, R.; Zhu, B.; Wang, L.; Chen, P.; Lou, H.; Wu, W.; Qi, C.; Lei, M.; Jiang, H. ACS Catal. 2020, 10, 7968.
[7]
(b) Gaydou, M.; Moragas, T.; Juliá-Hernández, F.; Martin, R. J. Am. Chem. Soc. 2017, 139, 12161.
[7]
(c) Catherine, M.; Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936.
[7]
(d) Alkayal, A.; Tabas, V.; Montanaro, S.; Wright, I. A.; Malkov, A. V.; Buckley, B. R. J. Am. Chem. Soc. 2020, 142, 1780.
[7]
(e) Bertuzzi, G.; Cerveri, A.; Lombardi, L.; Bandini, M. Chin. J. Chem. 2021, 39, 3116.
[7]
(f) Wang, M.-M.; Lu, S.-M.; Li, C. ACS Catal. 2022, 12, 10801.
[7]
(g) Xu, P.; Xu, H.; Wang, S.; Hao, T.-Z.; Yan, S.-Y.; Guo, D.; Zhu, X. Org. Chem. Front. 2023, 10, 2013.
[7]
(h) Ran, C.-K.; Xiao, H.-Z.; Liao, L.-L.; Ju, T.; Zhang, W.; Yu, D.-G. National Sci. Open 2022, 2, 20220024.
[8]
(a) He, X.; Qiu, L.-Q.; Wang, W.-J.; Chen, K.-H.; He, L.-N. Green Chem. 2020, 22, 7301.
[8]
(b) Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Acc. Chem. Res. 2021, 54, 2518.
[8]
(c) Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. ACS Catal. 2020, 10, 10871.
[9]
(a) Fu, Q.; Bo, Z.-Y.; Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G. Nature Commun. 2019, 10, 3592.
[9]
(b) Yue, J.-P.; Xu, J.-C.; Luo, H.-T.; Chen, X.-W.; Song, H.-X.; Deng, Y.; Yuan, L.; Ye, J.-H.; Yu, D.-G. Nat. Catal. 2023, 6, 959.
[10]
Yatham, V. R.; Shen, Y.; Martin, R. Angew. Chem., Int. Ed. 2017, 56, 10915.
[11]
(a) Bai, J.; Li, M.; Zhou, C.; Sha, Y.; Cheng, J.; Sun, J.; Sun, S. Org. Lett. 2021, 23, 9654.
[11]
(b) Wang, H.; Gao, Y.; Zhou, C.; Li, G. J. Am. Chem. Soc. 2020, 142, 8122.
[11]
(c) Hou, J.; Ee, A.; Cao, H.; Ong, H.-W.; Xu, J.-H.; Wu, J. Angew. Chem., Int. Ed. 2018, 57, 17220.
[11]
(d) Ye, J.-H.; Miao, M.; Huang, H.; Yan, S.-S.; Yin, Z.-B.; Zhou, W.-J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15416.
[11]
(e) Zhang, B.; Yi, Y.; Wu, Z.-Q.; Chen, C.; Xi, C. Green Chem. 2020, 22, 5961.
[12]
(a) Dénès, F.; Pérez-Luna, A.; Chemla, F. Chem. Rev. 2010, 110, 2366.
[12]
(b) Reddy, C. R.; Prasad, A. S.; Ajaykumar, U. Org. Lett. 2024, 26, 4904.
[13]
Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672.
[14]
(a) Hou, H.; Pan, Y.; Sun, Y.; Han, Y.; Yan, C.; Shi, Y.; Zhu, S. Chem. Eur. J. 2023, 29, e202301633.
[14]
(b) Yamashita, Y.; Ogasawara, Y.; Banik, T.; Kobayashi, S. J. Am. Chem. Soc. 2023, 145, 23160.
[14]
(c) Zhu, S.; Sun, Y.; Pan, Y.; Chen, X.; Yu, H.; Han, Y.; Yan, C.; Shi, Y.; Hou, H. J. Org. Chem. 2023, 88, 16639.
[14]
(d) Dong, M.-Y.; Han, C.-Y.; Li, D.-S.; Hong, Y.; Liu, F.; Deng, H.-P. ACS Catal. 2022, 12, 9533.
[14]
(e) White, D. R.; Hinds, E. M.; Bornowski, E. C.; Wolfe, J. P. Org. Lett. 2019, 21, 3813.
[15]
Hong, Y.; Dong, M.-Y.; Li, D.-S.; Deng, H.-P. Org. Lett. 2022, 24, 7677.
[16]
Ba?, S.; Yamashita, Y.; Kobayashi, S. ACS Catal. 2020, 10, 10546.
[17]
Li, T.; Wang, W.; Dong, M.; Zhang, Z.; Yu, S.; Chen, Z.; Wei, S.; Yi, D. Chin. J. Chem. 2024, 42, 957.
[18]
(a) Zhou, C.; Li, M.; Sun, J.; Cheng, J.; Sun, S. Org. Lett. 2021, 23, 2895.
[18]
(b) Gao, W.; Yang, Q.; Yang, H.; Yao, Y.; Bai, J.; Sun, J.; Sun, S. Org. Lett. 2024, 26, 467.
[18]
(c) Yang, H.; Yao, Y.; Yang, Q.; Yao, Y.; Sun, J.; Sun, S. Org. Lett. 2024, 26, 4194.
[19]
Cheng, Z.; Jin, W.; Liu, C. Org. Chem. Front. 2019, 6, 841.
[20]
(a) Speckmeier, E.; Fischer, T. G.; Zeitler, K. J. Am. Chem. Soc. 2018, 140, 15353.
[20]
(b) Leitch, J. A.; Rogova, T.; Duarte, F.; Dixon, D. J. Angew. Chem., Int. Ed. 2020, 59, 4121.
[20]
(c) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Angew. Chem., Int. Ed. 2016, 55, 1872.
文章导航

/