共轭二烯参与的[4+1]环加成反应研究进展
收稿日期: 2024-07-29
修回日期: 2024-09-04
网络出版日期: 2024-09-19
基金资助
南方科技大学启动基金及广东省催化化学重点实验室基金(2020B121201002)
Progress in [4+1] Cycloadditions of Conjugated Dienes
Received date: 2024-07-29
Revised date: 2024-09-04
Online published: 2024-09-19
Supported by
Startup Fund of Southern University of Science and Technology and the Guangdong Provincial Key Laboratory of Catalysis(2020B121201002)
五元环是广泛存在于天然产物、药物和功能材料中的一类重要结构单元, 也是有机合成中常用的重要中间体和药物开发的优选骨架. 因此, 五元环化合物的高效合成一直是有机合成领域的重要研究方向之一. 廉价易得、结构多样的共轭二烯参与的[4+1]环加成反应是一种具有步骤经济性的直接构建五元碳环和杂环化合物的高效方法和策略, 备受有机合成界的青睐. 近年来, 随着过渡金属催化体系和“一原子”合成子前体的开发, 此类将简单易得原料转化成结构复杂和官能团多样化的五元环状分子的[4+1]环加成反应得到了较快的发展, 很多优秀的成果被报道出来. 详细介绍了共轭二烯与“一原子”合成子(一氧化碳、卡宾、硅宾以及氮宾)的[4+1]环加成反应的研究进展, 并按照合成子的类型进行了分类讨论, 最后总结了该领域存在的挑战, 展望了未来的研究方向.
张业飞 , 唐勇 , 周友运 . 共轭二烯参与的[4+1]环加成反应研究进展[J]. 有机化学, 2025 , 45(1) : 1 -21 . DOI: 10.6023/cjoc202407043
Five-membered ring motifs widely exist in many natural products, pharmaceuticals and organic materials, and are also important intermediates in organic synthesis and core structures for drug development. Therefore, highly efficient approaches for the synthesis of five-membered cyclic compounds are in high demand. [4+1] cycloaddition of readily available conjugated diene provides an efficient and straightforward strategy to construct five-membered carbo- and heterocyclic compounds in an atom-economic manner, and have therefore attracted more attention from the synthetic community. In recent years, duo the significant advances in transition-metal catalysis and precursors of one-atom synthons, [4+1] cycloadditions, which convert simple and readily accessible substrates into complex and diverse five-membered ring molecules, are rapidly growing and a series of excellent achievements have been reported. This review presents the progress in [4+1] cycloaddition reactions of conjugated diene with various one-atom synthons involving carbon monoxide (CO), carbenes, silylenes, germylenes and nitrenes. The reactions and their mechanisms are discussed according to the types of one-atom synthons. Furthermore, the challenges and future development trends in this field are also prospected.
| [1] | (a) Das, S.; Chandrasekhar, S.; Yadav, J. S.; Gree, R. Chem. Rev. 2007, 107, 3286. |
| [1] | (b) Kurteva, V. B.; Afonso, C. A. M. Chem. Rev. 2009, 109, 6809. |
| [1] | (c) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257. |
| [1] | (d) Ni, H. Q.; Cooper, P.; Engle, K. M. Chem. Commun. 2021, 57, 7610. |
| [1] | (e) Marshall, C. M.; Federice, J. G.; Bell, C. N.; Cox, P. B.; Njar-darson, J. T. J. Med. Chem. 2024, 67, 11622. |
| [2] | (a) Ohshita, J. Macromol. Chem. Phys. 2009, 210, 1360. |
| [2] | (b) Dong, Z.; Albers, L.; Müller, T. Acc. Chem. Res. 2020, 53, 532. |
| [3] | (a) Padwa, A.; Pearson, W. H. Synthetic Applications of 1, 3-Dipolar Cycloaddition Chemistry toward Heterocycles and Natural Products, Wiley-Interscience, New York, 2002. |
| [3] | For reviews: (b) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863. |
| [3] | (c) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765. |
| [3] | (d) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484. |
| [3] | (e) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887. |
| [3] | (f) Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784. |
| [3] | (g) Adrio, J.; Carretero, J. C. Chem. Commun. 2014, 50, 12434. |
| [4] | (a) Torres, R. R. The Pauson-Khand Reaction: Scope, Variations and Applications, Wiley-VCH, Weinheim, 2012. |
| [4] | For reviews: (b) Gibson, S. E.; Stevenazzi, A. Angew. Chem., Int. Ed. 2003, 42, 1800. |
| [4] | (c) Blanco-Urgoiti, J.; Anorbe, L.; Perez-Serrano, L.; Dominguez, G.; Perez-Castells, J. Chem. Soc. Rev. 2004, 33, 32. |
| [4] | (d) Shibata, T. Adv. Synth. Catal. 2006, 348, 2328. |
| [4] | (e) Lee, H. W.; Kwong, F. Y. Eur. J. Org. Chem. 2010, 789. |
| [5] | (a) Hudlicky, T.; Price, J. D. Chem. Rev. 1989, 89, 1467. |
| [5] | (b) Wong, H. N. C.; Hon, M. Y.; Tse, C. W.; Yip, Y. C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165. |
| [5] | (c) Baldwin, J. E. Chem. Rev. 2003, 103, 1197. |
| [5] | (d) Baldwin, J. E.; Leber, P. A. Org. Biomol. Chem. 2008, 6, 36. |
| [5] | (e) Hudlicky, T.; Reed, J. W. Angew. Chem., Int. Ed. 2010, 49, 4864. |
| [6] | (a) Lu, L. Q.; Zhang, J. J.; Li, F.; Cheng, Y.; An, J.; Chen, J. R.; Xiao, W. J. Angew. Chem., Int. Ed. 2010, 49, 4495. |
| [6] | (b) Wang, Q.; Qi, X. T.; Lu, L. Q.; Li, T. R.; Yuan, Z. G.; Zhang, K.; Li, B. J.; Lan, Y.; Xiao, W. J. Angew. Chem., Int. Ed. 2016, 55, 2840. |
| [6] | (c) Wang, Q.; Li, T. R.; Lu, L. Q.; Li, M. M.; Zhang, K.; Xiao, W. J. J. Am. Chem. Soc. 2016, 138, 8360. |
| [6] | (d) Liu, H.; He, G. C.; Zhao, C. Y.; Zhang, X. X.; Ji, D. W.; Hu, Y. C.; Chen, Q. A. Angew. Chem., Int. Ed. 2021, 60, 24284. |
| [6] | (e) Kong, H. H.; Zhu, C. J.; Deng, S.; Xu, G.; Zhao, R. N.; Yao, C. C.; Xiang, H. M.; Zhao, C. H.; Qi, T. T.; Xu, H. J. Am. Chem. Soc. 2022, 144, 21347. |
| [6] | (f) Qu, B. L.; Shi, B.; He, L.; Shi, J. W.; Xiao, W. J.; Lu, L. Q. Org. Chem. Front. 2023, 10, 3498. |
| [6] | For reviews: (g) Li, Y.; Feng, K. L.; Zhao, R. N.; Zhu, C. J.; Xu, H. Synlett 2024, 35, 1089. |
| [7] | (a) Murakami, M.; Itami, K.; Ito, Y. Angew. Chem., Int. Ed. Engl. 1996, 34, 2691. |
| [7] | (b) Murakami, M.; Itami, K.; Ito, Y. J. Am. Chem. Soc. 1997, 119, 2950. |
| [7] | (c) Murakami, M.; Itami, K.; Ito, Y. Organometallics 1999, 18, 1326. |
| [7] | (d) Murakami, M.; Itami, K.; Ito, Y. J. Am. Chem. Soc. 1999, 121, 4130. |
| [7] | (e) Chatani, N. In Ruthenium Catalysts and Fine Chemistry, Vol. 11, Eds.: Bruneau, C.; Dixneuf, P., Springer, Berlin Heidelberg, 2004. |
| [7] | (f) Kollar, L. Modern Carbonylation Methods, Wiley-VCH, Weinheim, 2008. |
| [7] | For a review: (g) Li, C. L.; Yu, Z. X. Chin. J. Org. Chem. 2024, 44, 1045 (in Chinese). |
| [7] | (李晨龙, 余志祥, 有机化学, 2024, 44, 1045.) |
| [8] | Fru?hauf, H. W. Chem. Rev. 1997, 97, 523. |
| [9] | Johnson, B. F. G.; Lewis, J.; Thompson, D. J. Tetrahedron Lett. 1974, 15, 3789. |
| [10] | (a) Franck-Neumann, M.; Vernier, J. M. Tetrahedron Lett. 1992, 33, 7361. |
| [10] | (b) Franck-Neumann, M.; Michelotti, E. L.; Simler, R.; Vernier, J. M. Tetrahedron Lett. 1992, 33, 7365. |
| [11] | Yang, Y. S.; Li, H. X.; Zhu, Y. T.; Zhang, Z. Y.; Yu, Z. X. J. Am. Chem. Soc. 2023, 145, 17087. |
| [12] | Chen, J. R.; Hu, X. Q.; Lu, L. Q.; Xiao, W. J. Chem. Rev. 2015, 115, 5301. |
| [13] | (a) Fujimoto, H.; Hoffmann, R. J. Phys. Chem. 1974, 78, 1167. |
| [13] | (b) Schoeller, W. W.; Yurtsever, E. J. Am. Chem. Soc. 1978, 100, 7548. |
| [13] | (c) Bauld, N. L.; Wirth, D. J. Comput. Chem. 1981, 2, 1. |
| [13] | (d) Moss, R. A.; Jones, M. Jr. In Reactive Intermediates, Vol. 2, Wiley, New York, 1981, Chapter 3. |
| [13] | (e) Schoeller, W. W.; Aktekin, N. J. Chem. Soc., Chem. Commun. 1982, 20. |
| [13] | (f) Evanseck, J. D.; Mareda, J.; Houk, K. N. J. Am. Chem. Soc. 1990, 112, 73. |
| [14] | Schnaubelt, J.; Marks, E.; Reibig, H. U. Chem. Ber. 1996, 129, 73. |
| [15] | (a) Salomon, R. G., Salomon, M. E.; Kachinsky, J. L. C. J. Am. Chem. Soc. 1977, 99, 1043. |
| [15] | (b) Doyle, M. P.; Van Leusen, D. J. Am. Chem. Soc. 1981, 103, 5917. |
| [15] | (c) Hudlicky, T.; Kutchan, T. M.; Naqvi, S. M. Org. React. 1985, 33, 247. |
| [16] | Hofmann, B.; Reibig, H. U. Chem. Ber. 1994, 127, 2315. |
| [17] | (a) Davies, H. M. L.; Hu, B.; Saikali, E.; Brazinski, P. R. J. Org. Chem. 1994, 59, 4535. |
| [17] | (b) Trost, B. M.; Hashmi, A. S. K. J. Am. Chem. Soc. 1994, 116, 2183. |
| [17] | (c) Hoffmann, M. Ph.D. Dissertation, Technische Universität, Dresden, 1994. |
| [18] | Arduengo III, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361. |
| [19] | Moss, R. A.; Wtostowski, M.; Shen, S.; Krogh-Jespersen, K.; Matro, A. J. Am. Chem. Soc. 1988, 110, 4443. |
| [20] | (a) Warkentin, J. Acc. Chem. Res. 2009, 42, 205. |
| [20] | (b) Warkentin, J. In Advances in Carbene Chemistry, Vol. 2, Ed.:Brinker, U. H., JAI Press, Greenwich, 1998, pp. 245-295. |
| [21] | (a) Moss, R. A.; Cox, D. P. Tetrahedron Lett. 1985, 26, 1931. |
| [21] | (b) Olofson, R. A.; Walinsky, S. W.; Marino, J. P.; Jernow, J. L. J. Am. Chem. Soc. 1968, 90, 6554. |
| [21] | (c) Sheeren, J. W.; Slaps, R. J. F. M.; Nivard, R. J. F. Recl. Trav. Chim. Pays-Bas 1973, 92, 11. |
| [21] | (d) Corey, E. J.; Winter, R. A. E. J. Am. Chem. Soc. 1963, 85, 2677. |
| [22] | El-Saidi, M. Kassam, K.; Pole, D-L.; Tadey, T.; Warkentin, J. J. Am. Chem. Soc. 1992, 114, 8751. |
| [23] | Spino, C.; Rezaei, H.; Dupont-Gaudet, K.; Bélanger, F. J. Am. Chem. Soc. 2004, 126, 9926. |
| [24] | Boisvert, C.; Beaumier, F.; Spino, C. Org. Lett. 2007, 9, 5361. |
| [25] | Beaumier, F.; Dupuis, M.; Spino, C.; Legault, C.-L. J. Am. Chem. Soc. 2012, 134, 5938. |
| [26] | Gund, M.; Déry, M.; Amzallag, V.; Spino, C. Org. Lett. 2016, 18, 4280. |
| [27] | Cao, F.; Hu, F.; Xie, Q. M.; Luo, G. Y.; Chu, W. D.; He, L.; Liu, Q. Z. Asian J. Org. Chem. 2018, 7, 363. |
| [28] | (a) Wulff, W. D.; Yang, D. C.; Murray, C. K. Pure Appl. Chem. 1988, 60, 137. |
| [28] | (b) Rodriguez, K. X.; Kaltwasser, N.; Toni, T. A.; Ashfeld, B. L. Org. Lett. 2017, 19, 2482. |
| [28] | (c) Meloche, J. L.; Ashfeld, B. L. Angew. Chem., Int. Ed. 2017, 56, 6604. |
| [29] | Hu, F.; Zhou, Q.; Cao, F.; Chu, W. D.; He, L.; Liu, Q. Z. J. Org. Chem. 2018, 83, 12806. |
| [30] | (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323. |
| [30] | (b) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256. |
| [30] | (c) Simmons, H. E.; Cairns, T. L.; Vladuchick, S. A.; Hoiness, C. M. Org. React. 1973, 20, 1. |
| [30] | (d) Charette, A. B. Beauchemin, A. Org. React. 2001, 58, 1. |
| [31] | Sugita, H.; Mizuno, K.; Mori, T.; Isagawa, K.; Otsuji, Y. Angew. Chem., Int. Ed. Engl. 1991, 30, 984. |
| [32] | Fuchibe, K.; Aono, T.; Hu, J.; Ichikawa, J. J. Org. Lett. 2016, 18, 4502. |
| [33] | Zhou, Y. Y.; Uyeda, C. Science 2019, 363, 857. |
| [34] | Behlen, M. J.; Uyeda, C. J. Am. Chem. Soc. 2020, 142, 17294. |
| [35] | Yoon, T. P.; Jacobsen, E. N. Science 2003, 299, 1691. |
| [36] | Fischer, E. O.; Maasböl, A. Angew. Chem., Int. Ed. Engl. 1964, 3, 580. |
| [37] | (a) Hegedus, L. S. Tetrahedron 1997, 53, 4105. |
| [37] | (b) Barluenga, J.; Fan?anas, F. J. Tetrahedron 2000, 56, 4597. |
| [37] | (c) Barluenga, J.; Fernandez-Rodríguez, M. A. J. Organomet. Chem. 2005, 690, 539. |
| [37] | For reviews, see: (d) Ed.: Do?rwald, F. Z. Metal Carbenes in Organic Synthesis, Wiley-VCH, Weinheim, 2008. |
| [37] | (e)Metal Carbenes in Organic Synthesis, Vol. 13, Ed.: Do?tz, K. H., Berlin, Springer, 2004. |
| [37] | (f) Dotz, K. H.; Stendel, J. Chem. Rev. 2009, 109, 3227. |
| [38] | Sierra, M. A.; Soderberg, B.; Lander, P. A.; Hegedus, L. S. Organo- metallics 1993, 12, 3769. |
| [39] | Barluenga, J.; Aznar, F.; Fernandez, M. Chem.-Eur. J. 1997, 3, 1629. |
| [40] | Buchert, M.; Hoffmann, M.; Reibig, H. U. Chem. Ber. 1995, 128, 605. |
| [41] | Barluenga, J.; Lopez, S.; Florez, J. Angew. Chem., Int. Ed. 2003, 42, 231. |
| [42] | (a) Hoffmann, M.; Buchert, M.; Reissig, H. U. Angew. Chem., Int. Ed. Engl. 1997, 36, 283. |
| [42] | (b) Hoffmann, M.; Buchert, M.; Reissig, H. U. Chem.-Eur. J. 1999, 5, 876. |
| [43] | Kagoshima, H.; Okamura, T.; Akiyama, T. J. Am. Chem. Soc. 2001, 123, 7182. |
| [44] | Aznar, F. Fananas-Mastral, M.; Alonso, J.; Fananas, F. J. Chem.- Eur. J. 2008, 14, 325. |
| [45] | Dery, M.; Lefebvre, L. P.; Aissa, K.; Spino, C. Org. Lett. 2013, 15, 5456. |
| [46] | (a) Horvath, R. F.; Chan, T. H. J. Org. Chem. 1987, 52, 4489. |
| [46] | (b) Liu, D.; Kozmin, S. A. Angew. Chem., Int. Ed. 2001, 40, 4757. |
| [46] | (c) Sen, S.; Purushotham, M.; Qi, Y.; Sieburth, S. M. Org. Lett. 2007, 9, 4963. |
| [46] | (d) Singh, S.; Sieburth, S. M. Org. Lett. 2012, 14, 4422. |
| [46] | For a review see: (e) Hermanns, J.; Schmidt, B. J. Chem. Soc., Perkin Trans. 1 1999, 81. |
| [47] | (a) Igawa, K.; Yoshihiro, D.; Abe, Y.; Tomooka, K. Angew. Chem., Int. Ed. 2016, 55, 5814. |
| [47] | (b) Igawa, K.; Kuroo, A.; Yoshihiro, D.; Yamanaka, Y.; Tomooka, K. Synlett 2017, 28, 2445. |
| [47] | (c) Morontsev, A.; Gringolts, M.; Lakhtin, V.; Finkelshtein, E. J. Organomet. Chem. 2020, 911, 121156. |
| [48] | Salomon, R. G. J. Org. Chem. 1974, 39, 3602. |
| [49] | Dunogues, J.; Calas, R.; Dedier, J.; Pisciotti, F.; Lapouyade, P. J. Organomet. Chem. 1970, 25, 51. |
| [50] | (a) Beteille, J. P.; Clarke, M. P.; Davidson, I. M. T.; Dubac, J. Organometallics 1989, 8, 1292. |
| [50] | (b) Nagao, Y.; Takahashi, M.; Abe, Y.; Misono, T.; Jung, M. E. Bull. Chem. Soc. Jpn. 1993, 66, 2294. |
| [50] | (c) Jiang, P.; Gaspar, P. P. J. Am. Chem. Soc. 2001, 123, 8622. |
| [50] | (d) Nagao, Y.; Kimura, C.; Kozawa, K.; Jung, M. E. Silicon Chem. 2003, 2, 99. |
| [51] | Richter, W. J. J. Organomet. Chem. 1985, 289, 45. |
| [52] | Zhang, S.; Conlin, R. T. J. Am. Chem. Soc. 1991, 113, 4272. |
| [53] | (a) Hwang, R.-J.; Conlin, R. T.; Gaspar, P. P. J. Organomet. Chem. 1975, 94, C38. |
| [53] | (b) Sakurai, H.; Kobayashi, Y.; Sato, R.; Nakadaira, Y. Chem. Lett. 1983, 12, 1197. |
| [53] | (c) Bobbitt, K. L.; Gaspar, P. P. J. Organomet. Chem. 1995, 499, 17. |
| [54] | (a) Gaspar, P. P.; Hwang, R. J. J. Am. Chem. Soc. 1974, 96, 6198. |
| [54] | (b) Conlin, R. T.; Peterson, L. L. J. Organomet. Chem. 1982, 232, C71. |
| [54] | (c) Lei, D.; Hwang, R.-J.; Gaspar, P. P. J. Organomet. Chem. 1984, 271, 1. |
| [55] | (a) Corriu, R.; Lanneau, G.; Priou, C.; Soulairol, F.; Auner, N.; Probst, R.; Conlin, R.; Tan, C. J. Organomet. Chem. 1994, 466, 55. |
| [55] | (b) Tamao, K.; Nagata, K.; Asahara, M.; Kawachi, A.; Ito, Y.; Shiro, M. J. Am. Chem. Soc. 1995, 117, 11592. |
| [55] | (c) Belzner, J.; Ihmels, H.; Kneisel, B. O.; Gould, R. O.; Herbst-Irmer, R. Organometallics 1995, 14, 305. |
| [55] | (d) Takeda, N.; Tokitoh, N.; Okazaki, R. Chem. Lett. 2000, 29, 622. |
| [56] | Toulokhonova, I. S.; Friedrichsen, D. R.; Hill, N. J.; Müller, T.; West, R. Angew. Chem., Int. Ed. 2006, 45, 2578. |
| [57] | Ohmura, T.; Masuda, K.; Takase, I.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 16624. |
| [58] | Masuda, K.; Ohmura, T.; Suginome, M. Organometallics 2011, 30, 1322. |
| [59] | Sasaki, I.; Maebashi, A.; Li, J.; Ohmura, T.; Suginome, M. Eur. J. Org. Chem. 2022, e202101573. |
| [60] | Appler, H.; Neumann, W. P. J. Organomet. Chem. 1986, 314, 261. |
| [61] | Qi, L. L.; Pan, Q. Q.; Wei, X. X.; Pang, X. B.; Liu, Z. T.; Shu, X. Z. J. Am. Chem. Soc. 2023, 145, 13008. |
| [62] | Neumann, W. P. Chem. Rev. 1991, 91, 311. |
| [63] | Lei, D. Q.; Gaspar, P. P. Polyhedron 1991, 10, 1221. |
| [64] | Sasamori, T.; Miyamoto, H.; Sakai, H.; Furukawa, Y.; Tokitoh, N. Organometallics 2012, 31, 3904. |
| [65] | (a) Dequirez, G.; Pons, V.; Dauban, P. Angew. Chem., Int. Ed. 2012, 51, 7384. |
| [65] | (b) Ju, M.; Schomaker, J. M. Nat. Rev. Chem. 2021, 5, 580. |
| [65] | (c) Wang, Y. C.; Lai, X. J.; Huang, K. K.; Yadav, S.; Qiu, G. Y. S.; Zhang, L. P.; Zhou, H. W. Org. Chem. Front. 2021, 8, 1677. |
| [66] | Wu, Q.; Hu, J.; Ren, X. F.; Zhou, J. R. Chem.-Eur. J. 2011, 17, 11553. |
| [67] | Brichacek, M.; Villalobos, M.; Plichta, N. A.; Njardarson, J. T. Org. Lett. 2011, 13, 1110. |
| [68] | (a) Mimura, N.; Ibuka, T.; Akaji, M.; Miwa, Y.; Taga, T.; Nakai, K.; Tamamura, H.; Fujii, N.; Yamamoto, Y. Chem. Commun. 1996, 351. |
| [68] | (b) Ibuka, T.; Mimura, N.; Aoyama, H.; Akaji, M.; Ohno, H.; Miwa, Y.; Taga, T.; Nakai, K.; Tamamura, H.; Fujii, N.; Yamamoto, Y. J. Org. Chem. 1997, 62, 999. |
/
| 〈 |
|
〉 |