综述与进展

选择性C—H键氯化反应进展

  • 王娟娟 ,
  • 史妍 ,
  • 田英贤 ,
  • 刘丙贤
展开
  • 河南师范大学化学化工学院 抗病毒性传染病创新药物全国重点实验室 平原实验室 河南新乡 453007
共同第一作者

收稿日期: 2024-06-21

  修回日期: 2024-08-26

  网络出版日期: 2024-09-27

基金资助

河南省自然科学基金(222300420056); 河南省自然科学基金(222300420204)

Recent Progress in Selective C—H Chlorination

  • Juanjuan Wang ,
  • Yan Shi ,
  • Yingxian Tian ,
  • Bingxian Liu
Expand
  • Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007
The authors contributed equally to this work

Received date: 2024-06-21

  Revised date: 2024-08-26

  Online published: 2024-09-27

Supported by

Natural Science Foundation of Henan Province(222300420056); Natural Science Foundation of Henan Province(222300420204)

摘要

由于有机氯化物在药物化学、材料化学以及合成化学领域的重要作用, 碳氯键的构建一直是有机化学方向热点研究领域. 由于通过碳氢键断裂并直接转化为目标官能团具有高度的原子经济性, 其被认为是新一代极具潜力的物质构建和转化途径. 近年来, 随着碳氢键活化转化研究的发展, 一些C—H键氯化反应已被开发为传统卤化方法的实用替代方案, 此综述对近十年C—H键氯化反应的发展进行了归纳总结.

本文引用格式

王娟娟 , 史妍 , 田英贤 , 刘丙贤 . 选择性C—H键氯化反应进展[J]. 有机化学, 2025 , 45(2) : 574 -591 . DOI: 10.6023/cjoc202406030

Abstract

The importance of organic chlorides in pharmaceutical, material, and synthetic chemistry has made the constru- ction of C—Cl bonds a significant focus in organic chemistry. The cleavage and functionalization of C—H bonds with high atomic efficiency, leading to direct conversion into desired functional groups, is seen as a promising approach for creating new substances. Recent advancements in C—H bond activation/tranformation have led to the development of C—H chlorination reactions as viable alternatives to traditional halogenation methods. This review provides an overview of the progress made in C—H bond chlorination reactions over the last decade.

参考文献

[1]
Smith, B. R.; Eastman, C. M.; Njardarson, J. T. J. Med. Chem. 2014, 57, 9764.
[2]
Tang, M. L.; Bao, Z. Chem. Mater. 2010, 23, 446.
[3]
Nishii, Y.; Ikeda, M.; Hayashi, Y.; Kawauchi, S.; Miura, M. J. Am. Chem. Soc. 2020, 142, 1621.
[4]
Lin, R.; Amrute, A. P.; Perez-Ramirez, J. Chem. Rev. 2017, 117, 4182.
[5]
Petrone, D. A.; Ye, J.; Lautens, M. Chem. Rev. 2016, 116, 8003.
[6]
Ding, L.; Tang, J.; Cui, M.; Bo, C.; Chen, X.; Qiao, X. Ind. Eng. Chem. Res. 2011, 50, 11143.
[7]
Cambeiro, X. C.; Ahlsten, N.; Larrosa, I. J. Am. Chem. Soc. 2015, 137, 15636.
[8]
Liu, S.; Zhang, Q.; Li, H.; Yang, Y.; Tian, X.; Whiting, A. Chem.- Eur. J. 2015, 21, 9671.
[9]
Goldsmith, C. R.; Coates, C. M.; Hagan, K.; Mitchell, C. A. J. Mol. Catal. A: Chem. 2011, 335, 24.
[10]
Pu, M.; He, F. Acta Chim. Sinica 2023, 81, 1541 (in Chinese).
[10]
(蒲明瑞, 何凤, 化学学报, 2023, 81, 1541.)
[11]
Iwasa, E.; Hamashima, Y.; Fujishiro, S.; Higuchi, E.; Ito, A.; Yoshida, M.; Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4078.
[12]
Ohkita, T.; Tsuchiya, Y.; Togo, H. Tetrahedron 2008, 64, 7247.
[13]
Tay, D. W. P.; Nobbs, J. D.; Romain, C.; White, A. J. P.; Aitipamula, S.; van Meurs, M.; Britovsek, G. J. P. ACS Catal. 2019, 10, 663.
[14]
Kumaran, S.; Parthasarathy, K. J. Org. Chem. 2021, 86, 7987.
[15]
Wang, Q.; Zhang, W. W.; Song, H.; Wang, J.; Zheng, C.; Gu, Q.; You, S. L. J. Am. Chem. Soc. 2020, 142, 15678.
[16]
Yi, J.; Chen, M. Acta Chim. Sinica 2024, 82, 126 (in Chinese).
[16]
(易敬霖, 陈茂, 化学学报, 2024, 82, 126.)
[17]
Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed. 2009, 48, 6954.
[18]
Cui, C.; Dai, M. Chin. J. Chem. 2023, 41, 3019.
[19]
Su, J.; Li, C.; Hu, X.; Guo, Y.; Song, Q. Angew. Chem., Int. Ed. 2022, 61, e202212740.
[20]
Bhoyare, V. W.; Sosa Carrizo, E. D.; Chintawar, C. C.; Gandon, V.; Patil, N. T. J. Am. Chem. Soc. 2023, 145, 8810.
[21]
Helbert, H.; Visser, P.; Hermens, J. G. H.; Buter, J.; Feringa, B. L. Nat. Catal. 2020, 3, 664.
[22]
Forero-Cortés, P. A.; Haydl, A. M. Org. Process Res. Dev. 2019, 23, 1478.
[23]
Liu, Y.; Fang, Y.; Zhang, L.; Jin, X.; Li, R.; Zhu, S.; Gao, H.; Fang, J.; Xia, Q. Chin. J. Org. Chem. 2014, 34, 1523 (in Chinese).
[23]
(刘雨燕, 方烨汶, 张莉, 金小平, 李瑞丰, 朱帅汝, 高浩其, 房江华, 夏勤波, 有机化学, 2014, 34, 1523.)
[24]
Ziegler, D. S.; Wei, B.; Knochel, P. Chem. Eur. J. 2019, 25, 2695.
[25]
Das, R.; Kapur, M. Asian J. Org. Chem. 2018, 7, 1524.
[26]
Chen, J.; Lin, J. H.; Xiao, J. C. Org. Lett. 2018, 20, 3061.
[27]
Samanta, R. C.; Yamamoto, H. Chem.-Eur. J. 2015, 21, 11976.
[28]
Maddox, S. M.; Nalbandian, C. J.; Smith, D. E.; Gustafson, J. L. Org. Lett. 2015, 17, 1042.
[29]
Werf, A.; Selander, N. Org. Lett. 2015, 17, 6210.
[30]
Maddox, S. M.; Dinh, A. N.; Armenta, F.; Um, J.; Gustafson, J. L. Org. Lett. 2016, 18, 5476.
[31]
Xiong, X.; Yeung, Y.-Y. ACS Catal. 2018, 8, 4033.
[32]
Song, S.; Li, X.; Wei, J.; Wang, W.; Zhang, Y.; Ai, L.; Zhu, Y.; Shi, X.; Zhang, X.; Jiao, N. Nat. Catal. 2019, 3, 107.
[33]
Li, G.; Zhu, B.; Ma, X.; Jia, C.; Lv, X.; Wang, J.; Zhao, F.; Lv, Y.; Yang, S. Org. Lett. 2017, 19, 5166.
[34]
Fan, Z.; Lu, H.; Cheng, Z.; Zhang, A. Chem Commun. 2018, 54, 6008.
[35]
Zhang, H.; Xu, M.; Liu, N.; Yang, F. ChemistrySelect 2021, 6, 2319.
[36]
Fosu, S. C.; Hambira, C. M.; Chen, A. D.; Fuchs, J. R.; Nagib, D. A. Chem 2019, 5, 417.
[37]
Segura-Quezada, A.; Satkar, Y.; Patil, D.; Mali, N.; Wrobel, K.; González, G.; Zárraga, R.; Ortiz-Alvarado, R.; Solorio-Alvarado, C. R. Tetrahedron Lett. 2019, 60, 1551.
[38]
Granados, A.; Jia, Z.; del Olmo, M.; Vallribera, A. Eur. J. Org. Chem. 2019, 2019, 2812.
[39]
Hering, T.; K?nig, B. Tetrahedron 2016, 72, 7821.
[40]
Düsel, S. J. S.; K?nig, B. Eur. J. Org. Chem. 2019, 2020, 1491.
[41]
Rogers, D. A.; Gallegos, J. M.; Hopkins, M. D.; Lignieres, A. A.; Pitzel, A. K.; Lamar, A. A. Tetrahedron 2019, 75, 130498.
[42]
Zhang, L.; Hu, X. Chem. Sci. 2017, 8, 7009.
[43]
Xie, W. C.; Wang, M.; Yang, S.; Chen, Y. D.; Feng, J.; Huang, Y. T. Org. Biomol. Chem. 2022, 20, 5319.
[44]
Harnedy, J.; Hareram, M. D.; Tizzard, G. J.; Coles, S. J.; Morrill, L. C. Chem. Commun. 2021, 57, 12643.
[45]
Liu, T.; Lu, H. K.; Shi, Z.; Yan, H.; Li, Z.; Ye, K. Y. Eur. J. Org. Chem. 2024, 27, e202300880.
[46]
Fahey, D. R. Chem. Commun. 1970, 7, 417a.
[47]
Du, B.; Jiang, X.; Sun, P. J. Org. Chem. 2013, 78, 2786.
[48]
Mo, S.; Zhu, Y.; Shen, Z. Org. Biomol. Chem. 2013, 11, 2756.
[49]
Qian, G.; Hong, X.; Liu, B.; Mao, H.; Xu, B. Org. Lett. 2014, 16, 5294.
[50]
Li, B.; Liu, B.; Shi, B. F. Chem. Commun. 2015, 51, 5093.
[51]
Zhan, B. B.; Liu, Y. H.; Hu, F.; Shi, B. F. Chem. Commun. 2016, 52, 4934.
[52]
Kathiravan, S.; Nicholls, I. A. Chem.-Eur. J. 2017, 23, 7031.
[53]
Zhu, Y.; Huang, J.; Yang, X. Chin. J. Org. Chem. 2019, 39, 1665 (in Chinese).
[53]
(朱晔, 黄金文, 杨先金, 有机化学, 2019, 39, 1665.)
[54]
Shi, H.; Wang, P.; Suzuki, S.; Farmer, M. E.; Yu, J. Q. J. Am. Chem. Soc. 2016, 138, 14876.
[55]
Wang, Y.; Li, G. X.; Yang, G.; He, G.; Chen, G. Chem. Sci. 2016, 7, 2679.
[56]
Zhao, M.; Lu, W. Org Lett. 2017, 19, 4560.
[57]
Xiang, M.; Zhou, C.; Yang, X. L.; Chen, B.; Tung, C. H.; Wu, L. Z. J. Org. Chem. 2020, 85, 9080.
[58]
He, Q.; Cao, Z.; Zhang, Y.; Chen, G.; Wang, Y. Adv. Synth. Catal. 2023, 365, 2711.
[59]
McMillan, A. J.; Sienkowska, M.; Di Lorenzo, P.; Gransbury, G. K.; Chilton, N. F.; Salamone, M.; Ruffoni, A.; Bietti, M.; Leonori, D. Angew. Chem., Int. Ed. 2021, 60, 7132.
[60]
Liu, R. Z.; Li, J.; Sun, J.; Liu, X. G.; Qu, S.; Li, P.; Zhang, B. Angew. Chem., Int. Ed. 2020, 59, 4428.
[61]
Zhu, Y.; Shi, J.; Yu, W. Org. Lett. 2020, 22, 8899.
[62]
Herron, A. N.; Liu, D.; Xia, G.; Yu, J. Q. J. Am. Chem. Soc. 2020, 142, 2766.
[63]
He, Y.; Tian, C.; An, G.; Li, G. Chin. Chem. Lett. 2024, 35, 108546.
[64]
Short, M. A.; Blackburn, J. M.; Roizen, J. L. Angew. Chem., Int. Ed. 2018, 57, 296.
[65]
Zhao, J.; Zhang, J.; Fang, P.; Wu, J.; Wang, F.; Liu, Z.-Q. Green Chem. 2024, 26, 507.
[66]
Ozawa, J.; Kanai, M. Org. Lett. 2017, 19, 1430.
[67]
Li, G.; Dilger, A. K.; Cheng, P. T.; Ewing, W. R.; Groves, J. T. Angew. Chem., Int. Ed. 2018, 57, 1251.
[68]
Jin, J.; Zhao, Y.; Kyne, S. H.; Farshadfar, K.; Ariafard, A.; Chan, P. W. H. Nat. Commun. 2021, 12, 4065.
[69]
Lopez, M. A.; Buss, J. A.; Stahl, S. S. Org. Lett. 2022, 24, 597.
[70]
Stowers, K. J.; Kubota, A.; Sanford, M. S. Chem. Sci. 2012, 3, 3192.
[71]
Li, B.; Wang, S.-Q.; Liu, B.; Shi, B.-F. Org. Lett. 2015, 17, 1200.
[72]
Liu, W.; Tan, L.; Zhou, P.; Chen, C.; Zhang, Q. Synthesis 2013, 45, 2600.
[73]
Su, Y.; Shi, Y.; Chang, B.; Wu, L.; Chong, S.; Zhang, W.; Huang, D.; Wang, K.; Hu, Y. Chin. J. Org. Chem. 2018, 38, 1454 (in Chinese).
[73]
(苏瀛鹏, 石娅, 常兵兵, 吴丽丽, 种思颖, 张为钢, 黄丹凤, 王克虎, 胡雨来, 有机化学, 2018, 38, 1454.)
[74]
Rit, R. K.; Yadav, M. R.; Ghosh, K.; Shankar, M.; Sahoo, A. K. Org. Lett. 2014, 16, 5258.
[75]
Xiong, H. Y.; Cahard, D.; Pannecoucke, X.; Besset, T. Eur. J. Org. Chem. 2016, 2016, 3625.
[76]
Yang, X.; Sun, Y.; Sun, T. Y.; Rao, Y. Chem. Commun. 2016, 52, 6423.
文章导航

/