Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (2): 688-694.DOI: 10.6023/cjoc202008018 Previous Articles Next Articles
Article
周婷婷1, 刘霞1, 叶子航1, 周奕鹏1, 杨雅淇1, 徐清1,*()
收稿日期:
2020-08-12
修回日期:
2020-09-18
发布日期:
2020-09-30
通讯作者:
徐清
作者简介:
基金资助:
Tingting Zhou1, Xia Liu1, Zihang Ye1, Yipeng Zhou1, Yaqi Yang1, Qing Xu1,*()
Received:
2020-08-12
Revised:
2020-09-18
Published:
2020-09-30
Contact:
Qing Xu
Supported by:
Share
Tingting Zhou, Xia Liu, Zihang Ye, Yipeng Zhou, Yaqi Yang, Qing Xu. Cyanuric Chloride Catalysis and Solvent Effect Leading to a Mild and Efficient Beckmann Rearrangement of Ketoximes[J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 688-694.
Entry | Cat. (mol%) | Solvent | Tb/℃ | t/h | Yieldc/% |
---|---|---|---|---|---|
1 | AlCl3 (20) | CH3CN | 100 | 6 | 88 |
2 | ZnCl2 (20) | CH3CN | 100 | 6 | 56 |
3 | FeCl3 (20) | CH3CN | 100 | 6 | 71 |
4 | MoO3 (20) | CH3CN | 100 | 6 | Trace |
5 | MnO2 (20) | CH3CN | 100 | 6 | Trace |
6 | TSCl (20) | CH3CN | 100 | 6 | 69 |
7 | Phosphonitrilic chloride trimer (20) | CH3CN | 100 | 6 | 81 |
8 | Cyanuric chloride (20) | CH3CN | 100 | 6 | 84 |
9 | Cyanuric chloride (20) | CH3CN | 100 | 2 | 86 |
10 | Cyanuric chloride (20) | DMF | 100 | 2 | 66 |
11 | Cyanuric chloride (20) | DCE | 100 | 2 | 75 |
12 | Cyanuric chloride (20) | THF | 100 | 2 | 76 |
13 | Cyanuric chloride (20) | TFA | 100 | 2 | 93 |
14 | Cyanuric chloride (20) | HFIP | 100 | 2 | 95 |
15 | Cyanuric chloride (20) | HFIP | 60 | 2 | 96 |
16 | Cyanuric chloride (10) | HFIP | 60 | 2 | 94 |
17d | Cyanuric chloride (10) | HFIP | 60 | 2 | 90 |
18d | Cyanuric chloride (10) | HFIP | 45 | 2 | 91 |
19d | Cyanuric chloride (5) | HFIP | 45 | 2 | 80 |
20d | Cyanuric chloride (5) | HFIP | r.t. | 2 | 75 |
21d | Cyanuric chloride(1) | HFIP | r.t. | 24 | 95 |
22d | Cyanuric chloride (0.5) | HFIP | r.t. | 24 | 89 |
23d | Cyanuric chloride (0.3) | HFIP | r.t. | 24 | 77 |
24d | — | HFIP | r.t. | 24 | 36 |
Entry | Cat. (mol%) | Solvent | Tb/℃ | t/h | Yieldc/% |
---|---|---|---|---|---|
1 | AlCl3 (20) | CH3CN | 100 | 6 | 88 |
2 | ZnCl2 (20) | CH3CN | 100 | 6 | 56 |
3 | FeCl3 (20) | CH3CN | 100 | 6 | 71 |
4 | MoO3 (20) | CH3CN | 100 | 6 | Trace |
5 | MnO2 (20) | CH3CN | 100 | 6 | Trace |
6 | TSCl (20) | CH3CN | 100 | 6 | 69 |
7 | Phosphonitrilic chloride trimer (20) | CH3CN | 100 | 6 | 81 |
8 | Cyanuric chloride (20) | CH3CN | 100 | 6 | 84 |
9 | Cyanuric chloride (20) | CH3CN | 100 | 2 | 86 |
10 | Cyanuric chloride (20) | DMF | 100 | 2 | 66 |
11 | Cyanuric chloride (20) | DCE | 100 | 2 | 75 |
12 | Cyanuric chloride (20) | THF | 100 | 2 | 76 |
13 | Cyanuric chloride (20) | TFA | 100 | 2 | 93 |
14 | Cyanuric chloride (20) | HFIP | 100 | 2 | 95 |
15 | Cyanuric chloride (20) | HFIP | 60 | 2 | 96 |
16 | Cyanuric chloride (10) | HFIP | 60 | 2 | 94 |
17d | Cyanuric chloride (10) | HFIP | 60 | 2 | 90 |
18d | Cyanuric chloride (10) | HFIP | 45 | 2 | 91 |
19d | Cyanuric chloride (5) | HFIP | 45 | 2 | 80 |
20d | Cyanuric chloride (5) | HFIP | r.t. | 2 | 75 |
21d | Cyanuric chloride(1) | HFIP | r.t. | 24 | 95 |
22d | Cyanuric chloride (0.5) | HFIP | r.t. | 24 | 89 |
23d | Cyanuric chloride (0.3) | HFIP | r.t. | 24 | 77 |
24d | — | HFIP | r.t. | 24 | 36 |
Entry | 1 | 2 | Yieldb/% | Entry | 1 | 2 | Yieldb/% |
---|---|---|---|---|---|---|---|
1 | | | 95 | 12 | | | 91 |
2 | | | 95 (2b/2b': 52/48) | 13 | | | 82 |
3 | | | 92 | 14 | | | 81 |
4 | | | 89 | 15 | | | 84 |
5 | | | 96 | 16 | | | 96 |
6 | | | 89 | 17 | | | 91 |
7 | | | 92 | 18c | | | 71 |
8 | | | 98 | 19c | | | 72 |
9 | | | 89 | 20c | | | 77 |
Entry | 1 | 2 | Yieldb/% | Entry | 1 | 2 | Yieldb/% |
---|---|---|---|---|---|---|---|
1 | | | 95 | 12 | | | 91 |
2 | | | 95 (2b/2b': 52/48) | 13 | | | 82 |
3 | | | 92 | 14 | | | 81 |
4 | | | 89 | 15 | | | 84 |
5 | | | 96 | 16 | | | 96 |
6 | | | 89 | 17 | | | 91 |
7 | | | 92 | 18c | | | 71 |
8 | | | 98 | 19c | | | 72 |
9 | | | 89 | 20c | | | 77 |
[1] |
(a) Li X.; Xiog W.; Zheng Y. Pharm. J. Chin. People's Liberation Army 2007, 23, 56. (in Chinese)
pmid: 3D0BC9F6-3830-4FFC-B889-FDF93A78D197 |
李晓慧, 熊伟, 郑应华, 解放军药学学报, 2007, 23, 56.).
pmid: 3D0BC9F6-3830-4FFC-B889-FDF93A78D197 |
|
(b) Zheng Y.; Guo Q.; Yu Z. Fine Chem. Intermed. 2015, 45, 1. (in Chinese)
pmid: 3D0BC9F6-3830-4FFC-B889-FDF93A78D197 |
|
郑玉国, 郭晴晴, 余忠林, 精细化工中间体, 2015, 45, 1.).
pmid: 3D0BC9F6-3830-4FFC-B889-FDF93A78D197 |
|
(c) Huang P. Acta Chim. Sinica 2018, 76, 357. (in Chinese)
doi: 10.6023/A18020054 pmid: 3D0BC9F6-3830-4FFC-B889-FDF93A78D197 |
|
黄培强, 化学学报, 2018, 76, 357.).
doi: 10.6023/A18020054 pmid: 3D0BC9F6-3830-4FFC-B889-FDF93A78D197 |
|
[2] |
Zhou Y; Lu J.; Zhu M. Synth. Fiber Ind. 2015, 38, 51. (in Chinese)
|
周云, 卢建国, 朱明乔, 合成纤维工业, 2015, 38, 51.).
|
|
[3] |
(a) Chen H.; Dai W.; Chen Y.; Xu Q.; Chen J.; Yu L.; Zhao Y.; Ye M.; Pan Y. Green Chem. 2014, 16, 2136.
doi: 10.1039/C3GC42310G pmid: 658EE764-0E13-4DDC-81E2-574167568B82 |
(b) Li Y.; Chen H.; Liu J.; Wan X.; Xu Q. Green Chem. 2016, 18, 4865.
doi: 10.1039/C6GC01565D pmid: 658EE764-0E13-4DDC-81E2-574167568B82 |
|
(c) Ma X.; Li B.; Xiao Y.; Yu X.; Su C.; Xu Q. Chin. J. Org. Chem. 2017, 37, 2034. (in Chinese)
doi: 10.6023/cjoc201703028 pmid: 658EE764-0E13-4DDC-81E2-574167568B82 |
|
马献涛, 李波, 肖映林, 余小春, 苏陈良, 徐清, 有机化学, 2017, 37, 2034.).
doi: 10.6023/cjoc201703028 pmid: 658EE764-0E13-4DDC-81E2-574167568B82 |
|
[4] |
Beckmann E. Chem. Ber. 1886, 89, 988.
|
[5] |
Donaruma L.G.; Heldt W.Z. Org. React. 1960, 11, 1.
|
[6] |
Zhang J.; Liu Y.; Feng W.; Wu Y. Chin. J. Org. Chem. 2019, 39, 961. (in Chinese)
doi: 10.6023/cjoc201809031 pmid: 2B7A4B17-F226-47D9-8C56-090326A190D3 |
张健, 刘园园, 冯维春, 武玉民, 有机化学, 2019, 39, 961.).
doi: 10.6023/cjoc201809031 pmid: 2B7A4B17-F226-47D9-8C56-090326A190D3 |
|
[7] |
Rohokale S.V.; Kote S.R.; Deshmukh S, R.; Thopate, S.R.Chem. Pap. 2014, 68, 575.
|
[8] |
Guo S.; Du Z.; Zhang S.; Li D.; Li Z.; Deng Y. Green Chem. 2006, 8, 296.
doi: 10.1039/B513139A |
[9] |
Li D.; Mao D; Li J.; Zhou Y.; Wang J. Appl. Catal., A 2016, 510, 125.
doi: 10.1016/j.apcata.2015.11.014 |
[10] |
(a) Liu L.-F.; Liu H.; Pi H.-J.; Yang S.; Yao M.; Du W.; Deng W.-P. Synth. Commun. 2011, 41, 553.
doi: 10.1080/00397911003629416 |
(b) An N.; Pi H.; Liu L.; Du W.; Deng W. Chin. J. Chem. 2011, 29, 947.
doi: 10.1002/cjoc.201190193 |
|
[11] |
Li Z.; Lu Z.; Ding R.; Yang J. J. Chem. Res. 2006, 2006, 668.
doi: 10.3184/030823406779173523 |
[12] |
Yan P.; Batamack P.; Prakash G. K. S.; Olah G.A. Catal. Lett. 2006, 103, 165.
doi: 10.1007/s10562-005-7149-3 |
[13] |
Zhang X.; Mao D.; Leng Y.; Zhou. Y.; Wang, J.Catal Lett. 2013, 143, 193.
doi: 10.1007/s10562-012-0939-5 |
[14] |
Furuya Y.; Ishihara K.; Yamamoto H. J. Am. Chem. Soc. 2005, 127, 11240.
doi: 10.1021/ja053441x |
[15] |
(a) Betti C.; Landini D.; Maia A.; Pasi M. Synlett 2008, 908.
|
(b) Maia A.; Albanese D. C. M.; Landini D. Tetrahedron 2012, 68, 1947.
doi: 10.1016/j.tet.2011.12.051 |
|
[16] |
Hashimoto M.; Obora Y.; Ishii Y. Org. Process Res. Dev. 2009, 13, 411.
doi: 10.1021/op800258s |
[17] |
Srivastava V.P.; Patel R.; Garima; Yadav, L. D. S.Chem. Commun. 2010, 46, 5808.
doi: 10.1039/c0cc00815j |
[18] |
Kalkhambkar R.G.; Savanura H.M. RSC Adv. 2015, 5, 60106.
doi: 10.1039/C5RA07789C |
[19] |
Patil D.; Dalal D. Synth. Commun. 2013, 43, 118.
doi: 10.1080/00397911.2011.592747 |
[20] |
(a) Ikushima Y.; Hatakeda K.; Sato O.; Yokoyama T.; Arai M. J. Am. Chem. Soc. 2000, 122, 1908.
doi: 10.1021/ja9925251 |
(b) Yamaguchi Y.; Yasutake N.; Nagaoka M. J. Mol. Struct.: THEOCHEM 2003, 639, 137.
doi: 10.1016/j.theochem.2003.08.064 |
|
[21] |
Mao D.; Lu G.; Chen Q. React. Kinet. Catal. Lett. 2002, 75, 75.
doi: 10.1023/A:1014849501999 |
[22] |
Yang Q.-L.; Li Y.-Q.; Ma C.; Fang P.; Zhang X.-J.; Mei T.-S. J. Am. Chem. Soc. 2017, 139, 3293.
doi: 10.1021/jacs.7b01232 |
[23] |
Kim B.R.; Sung G.H.; Kim J.-J.; Yoon Y.-J. J. Korean Chem. Soc. 2013, 57, 295.
doi: 10.5012/jkcs.2013.57.2.295 |
[24] |
Xie F.; Du C.; Pang Y.; Lian X.; Xue C.; Chen Y.; Wang X.; Cheng M.; Guo C.; Lin B.; Liu Y. Tetrahedron Lett. 2016, 57, 5820.
doi: 10.1016/j.tetlet.2016.11.054 |
[25] |
Zhi P.; Xi Z.-W.; Wang D.-Y.; Wang W.; Liang X.-Z.; Tao F.-F.; Shen R.-P.; Shen Y. New J. Chem. 2019, 43, 709.
doi: 10.1039/C8NJ05288C |
[26] |
Jefferies L.R.; Weber S.R.; Cook S.P. Synlett 2015, 26, 331.
doi: 10.1055/s-00000083 |
[27] |
Beinker P.; Hanson J.R.; Meindl N.; Medina I. C. R.J. Chem. Res. ( S ) 1998, 204.
|
[28] |
Gao Y.; Liu J.; Li Z.; Guo T.; Xu S.; Zhu H.; Wei F.; Chen S.; Hailemariam G.; Guo K. J. Org. Chem. 2018, 83, 2040.
doi: 10.1021/acs.joc.7b02983 |
[29] |
Pelagalli R.; Chiarotto I.; Feroci M.; Vecchio S. Green Chem. 2012, 14, 2251.
doi: 10.1039/c2gc35485c |
[30] |
Choudhary V.R.; Dumbre D.K. Catal. Commun. 2011, 12, 1351.
doi: 10.1016/j.catcom.2011.05.015 |
[31] |
Sharley D. D. S.; Williams J. M. J.Chem. Commun. 2017, 53, 2020.
doi: 10.1039/C6CC09023K |
[1] | Yang Li, Yanan Dong, Yuehui Li. Efficient Synthesis of Nitrile Compounds through Amide Conversion via N-Boroamide Intermediates [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 638-643. |
[2] | Penghui Li, Qingyang Xie, Fuxian Wan, Yuanhong Zhang, Lin Jiang. Synthesis and Fungicidal Activity of Novel Substituted Pyrimidine-5-carboxamides Bearing Cyclopropyl Moiety [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 650-656. |
[3] | Baochang Gao, Yu Shi, Yuan Tian, Zhiguo Zhang, Jingru Zhang, Yufeng Sun, Guoliang Mao, Lingyan Dai. Synthesis of 4-Methyl-2-oxo-6-arylamino-2H-pyran-3-carbonitrile Derivatives [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 644-649. |
[4] | Suyan Tao, Zixin Xiang, Junjie Bai, Xiao Wan, Xiaobing Wan. Amide Hydrolysis Reaction Using tert-Butyl Nitrite [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 550-560. |
[5] | Gangzhong Jiang, Jiaxing Lin, Xiaoguang Bao, Xiaobing Wan. Isoamyl Nitrite Activated Primary Sulfonamide to Sulfonyl Bromide and Sulfonyl Chloride [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 533-549. |
[6] | Lijun Xu, Zongjun Li, Fushe Han, Xiang Gao. N,N-Dimethylformamide-Promoted Synthesis of Fullerene-Fused Oxazoline Derivatives [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 242-250. |
[7] | Bozhen Wang, Jie Zhang, Chunhui Nian, Mingming Jin, Miaomiao Kong, Wulan Li, Wenfei He, Jianzhang Wu. Synthesis and Antitumor Activity of 3,4-Dichlorophenyl Amides [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 232-241. |
[8] | Zhiyou Huang, Ping Yang, Bo He, Wenxia Ou, Siyu Yuan. Design and Synthesis of Morpholine Sulfonamide Compound and Its Inhibition on Soybean Seed Germination [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 309-315. |
[9] | Wenfeng Bei, Jian Pan, Dongmei Ran, Yilin Liu, Zhen Yang, Ruokun Feng. Cobalt-Catalyzed [4+2] Annulation of Indole Carboxamide with Diynes and Monoacetylene: Direct Access to γ-Carbolinones [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3226-3238. |
[10] | Jing Tang, Wenkun Luo, Jun Zhou. Advances in the Synthesis of Azaspiro[4.5]trienones [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3006-3034. |
[11] | Xiantao Ma, Xiaoyu Yan, Yingying Zhu, Shuanglin Niu, Yuxuan Wang, Chao Yuan. Water-Promoted Green Synthesis of Heteroaryl Thioether [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2136-2142. |
[12] | Zhijun Ren, Weiwei Luo, Jun Zhou. Recent Progress in Silver-Mediated Tandem Cyclization of N-Arylacrylamides [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2026-2039. |
[13] | Yu Wang, Yifang Chen, Xin Luo, Zhifu Xing, Ju Peng, Jixiang Chen. Design, Synthesis and Nematicidal Activity of Novel 2-Cyanoacrylate (Amide) Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2206-2216. |
[14] | Wenhan Yang, Jiwen Jiao, Xiaoming Wang. Merging Electron Transfer Activation with 1,2-Metalate Migration: Deoxygenative Silylation of Amides [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1857-1867. |
[15] | Yang Liu, Xiang Huang, Min Wang, Jian Liao. Enantioselective Copper-Catalyzed Mannich-Type Reaction of Cycic Ketimines and β,γ-Unsaturated N-Acylpyrazoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1499-1509. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||