Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (5): 1857-1867.DOI: 10.6023/cjoc202212019 Previous Articles Next Articles
Special Issue: 有机硼化学专辑
ARTICLES
收稿日期:
2022-12-14
修回日期:
2023-02-01
发布日期:
2023-02-22
通讯作者:
王晓明
基金资助:
Wenhan Yanga,b, Jiwen Jiaob, Xiaoming Wangb,c()
Received:
2022-12-14
Revised:
2023-02-01
Published:
2023-02-22
Contact:
Xiaoming Wang
Supported by:
Share
Wenhan Yang, Jiwen Jiao, Xiaoming Wang. Merging Electron Transfer Activation with 1,2-Metalate Migration: Deoxygenative Silylation of Amides[J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1857-1867.
Entry | Metal powder (equiv.) | SmI2 (equiv.) | Ligand (0.1 equiv.) | Yieldb/% |
---|---|---|---|---|
1 | Sm (2.0) | 2.0 | — | 70 |
2 | — | 2.0 | — | 21 |
3 | Mg (2.0) | 2.0 | — | 81 |
4 | Mg (2.0) | 2.0 | dppm | 74 |
5 | Mg (2.0) | 2.0 | dppp | 45 |
6 | Mg (2.0) | 2.0 | dppf | 77 |
7 | Mg (2.0) | 2.0 | Xantphos | 98 (98)c |
8 | Mg (2.0) | 2.0 | PPh3 | 47 |
9 | Mg (2.0) | 2.0 | L1 | 71 |
10 | Mg (2.0) | 2.0 | L2 | 73 |
11 | Mg (2.0) | 2.0 | BINAP | 81 |
12 | Mg (2.0) | 1.0 | Xantphos | 67 |
13 | Mg (2.0) | 2.0 | Xantphosd | 69 |
14 | Mg (5.0) | 0.2 | Xantphos | 34 |
Entry | Metal powder (equiv.) | SmI2 (equiv.) | Ligand (0.1 equiv.) | Yieldb/% |
---|---|---|---|---|
1 | Sm (2.0) | 2.0 | — | 70 |
2 | — | 2.0 | — | 21 |
3 | Mg (2.0) | 2.0 | — | 81 |
4 | Mg (2.0) | 2.0 | dppm | 74 |
5 | Mg (2.0) | 2.0 | dppp | 45 |
6 | Mg (2.0) | 2.0 | dppf | 77 |
7 | Mg (2.0) | 2.0 | Xantphos | 98 (98)c |
8 | Mg (2.0) | 2.0 | PPh3 | 47 |
9 | Mg (2.0) | 2.0 | L1 | 71 |
10 | Mg (2.0) | 2.0 | L2 | 73 |
11 | Mg (2.0) | 2.0 | BINAP | 81 |
12 | Mg (2.0) | 1.0 | Xantphos | 67 |
13 | Mg (2.0) | 2.0 | Xantphosd | 69 |
14 | Mg (5.0) | 0.2 | Xantphos | 34 |
[1] |
(a) Humphrey, J. M.; Chamberlin, A. R. Chem. Rev. 1997, 97, 2243.
pmid: 11848900 |
(b) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science, Wiley-VCH, New York, 2000.
pmid: 11848900 |
|
(c) Sewald, N.; Jakubke, H. D. Peptides: Chemistry and Biology, Wiley-VCH, Weinheim, Germany, 2002.
pmid: 11848900 |
|
(d) Tani, K.; Stoltz, B. M. Nature 2006, 441, 731.
doi: 10.1038/nature04842 pmid: 11848900 |
|
(e) Aubé, J. Angew. Chem., Int. Ed. 2012, 51, 3063.
doi: 10.1002/anie.v51.13 pmid: 11848900 |
|
[2] |
(a) Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Chem. Soc. Rev. 2018, 47, 7899.
doi: 10.1039/C8CS00335A |
(b) Sato, T.; Yoritate, M.; Tajima, H.; Chida, N. Org. Biomol. Chem. 2018, 16, 3864.
doi: 10.1039/C8OB00733K |
|
(c) Huang, P.-Q. Acta Chim. Sinica 2018, 76, 357. (in Chinese)
doi: 10.6023/A18020054 |
|
(黄培强, 化学学报, 2018, 76, 357.)
doi: 10.6023/A18020054 |
|
(d) Czerwiński, P. J.; Furman, B. Trends Chem. 2020, 2, 782.
doi: 10.1016/j.trechm.2020.07.001 |
|
(e) Czerwinski, P. J.; Furman, B. Front. Chem. 2021, 9, 655849.
doi: 10.3389/fchem.2021.655849 |
|
[3] |
(a) Xiao, K.-J.; Luo, J.-M.; Ye, K.-Y.; Wang, Y.; Huang, P.-Q. Angew. Chem., Int. Ed. 2010, 49, 3037.
doi: 10.1002/anie.201000652 pmid: 21154539 |
(b) Seebach, D. Angew. Chem., Int. Ed. 2011, 50, 96.
doi: 10.1002/anie.201003823 pmid: 21154539 |
|
(c) Pace, V.; Holzer, W.; Olofsson, B. Adv. Synth. Catal. 2014, 356, 3697.
doi: 10.1002/adsc.v356.18 pmid: 21154539 |
|
(d) Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421.
doi: 10.1021/acs.joc.6b00675 pmid: 21154539 |
|
[4] |
(a) Smith, A. M.; Whyman, R. Chem. Rev. 2014, 114, 5477.
doi: 10.1021/cr400609m pmid: 32753681 |
(b) Volkov, A.; Tinnis, F.; Slagbrand, T.; Trillo, P.; Adolfsson, H. Chem. Soc. Rev. 2016, 45, 6685.
doi: 10.1039/C6CS00244G pmid: 32753681 |
|
(c) Blanchet, J.; Chardon, A.; Morisset, E.; Rouden, J. Synthesis 2018, 50, 984.
doi: 10.1055/s-0036-1589144 pmid: 32753681 |
|
(d) Matheau-Raven, D.; Gabriel, P.; Leitch, J. A.; Almehmadi, Y. A.; Yamazaki, K.; Dixon, D. J. ACS Catal. 2020, 10, 8880.
doi: 10.1021/acscatal.0c02377 pmid: 32753681 |
|
(e) Ong, D. Y.; Chen, J.-h.; Chiba, S. Bull. Chem. Soc. Jpn. 2020, 93, 1339.
doi: 10.1246/bcsj.20200182 pmid: 32753681 |
|
(f) Tahara, A.; Nagashima, H. Tetrahedron Lett. 2020, 61, 151423.
doi: 10.1016/j.tetlet.2019.151423 pmid: 32753681 |
|
(g) Cabrero-Antonino, J. R.; Adam, R.; Papa, V.; Beller, M. Nat. Commun. 2020, 11, 3893.
doi: 10.1038/s41467-020-17588-5 pmid: 32753681 |
|
[5] |
(a) Sunada, Y.; Kawakami, H.; Imaoka, T.; Motoyama, Y.; Nagashima, H. Angew. Chem., Int. Ed. 2009, 48, 9511.
doi: 10.1002/anie.200905025 pmid: 37138902 |
(b) Hie, L.; Fine Nathel, N. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79.
doi: 10.1038/nature14615 pmid: 37138902 |
|
(c) Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7, 1413.
doi: 10.1021/acscatal.6b03277 pmid: 37138902 |
|
(d) Hu, J.; Wang, M.; Pu, X.; Shi, Z. Nat. Commun. 2017, 8, 14993.
doi: 10.1038/ncomms14993 pmid: 37138902 |
|
(e) Takise, R.; Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, 46, 5864.
doi: 10.1039/C7CS00182G pmid: 37138902 |
|
(f) Shi, S.; Nolan, S. P.; Szostak, M. Acc. Chem. Res. 2018, 51, 2589.
doi: 10.1021/acs.accounts.8b00410 pmid: 37138902 |
|
(g) Ronson, T. O.; Renders, E.; Van Steijvoort, B. F.; Wang, X.; Wybon, C. C. D.; Prokopcova, H.; Meerpoel, L.; Maes, B. U. W. Angew. Chem., Int. Ed. 2019, 58, 482.
doi: 10.1002/anie.v58.2 pmid: 37138902 |
|
(h) Zhou, T.; Ji, C. L.; Hong, X.; Szostak, M. Chem. Sci. 2019, 10, 9865.
doi: 10.1039/C9SC03169C pmid: 37138902 |
|
(i) Li, G.; Ma, S.; Szostak, M. Trends Chem. 2020, 2, 914.
doi: 10.1016/j.trechm.2020.08.001 pmid: 37138902 |
|
(j) Powell, W. C.; Evenson, G. E.; Walczak, M. A. ACS Catal. 2022, 12, 7789.
doi: 10.1021/acscatal.2c01938 pmid: 37138902 |
|
[6] |
(a) Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima, H. Chem. Commun. 2009, 1574.
pmid: 27071479 |
(b) Gregory, A. W.; Chambers, A.; Hawkins, A.; Jakubec, P.; Dixon, D. J. Chem.-Eur. J. 2015, 21, 111.
pmid: 27071479 |
|
(c) Fuentes de Arriba, A. L.; Lenci, E.; Sonawane, M.; Formery, O.; Dixon, D. J. Angew. Chem., Int. Ed. 2017, 56, 3655.
doi: 10.1002/anie.201612367 pmid: 27071479 |
|
(d) Nakajima, M.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 1696.
doi: 10.1021/acs.orglett.5b00664 pmid: 27071479 |
|
(e) Katahara, S.; Kobayashi, S.; Fujita, K.; Matsumoto, T.; Sato, T.; Chida, N. J. Am. Chem. Soc. 2016, 138, 5246.
doi: 10.1021/jacs.6b02324 pmid: 27071479 |
|
(f) Huang, P.-Q.; Ou, W.; Han, F. Chem. Commun. 2016, 52, 11967.
doi: 10.1039/C6CC05318A pmid: 27071479 |
|
(g) Ou, W.; Han, F.; Hu, X.-N.; Chen, H.; Huang, P.-Q. Angew. Chem., Int. Ed. 2018, 57, 11354.
doi: 10.1002/anie.201806747 pmid: 27071479 |
|
(h) Chen, D.-H.; Sun, W.-T.; Zhu, C.-J.; Lu, G.-S.; Wu, D.-P.; Wang, A.-E.; Huang, P.-Q. Angew. Chem., Int. Ed. 2021, 60, 8827.
doi: 10.1002/anie.v60.16 pmid: 27071479 |
|
(i) Chen, H.; Wu, Z.-Z.; Shao, D.-Y.; Huang, P.-Q. Sci. Adv. 2022, eade3431.
pmid: 27071479 |
|
[7] |
Sun, W.; Wang, L.; Hu, Y.; Wu, X.; Xia, C.; Liu, C. Nat. Commun. 2020, 11, 3113.
doi: 10.1038/s41467-020-16948-5 |
[8] |
(a) Kagan, H. B.; Namy, J. L. Tetrahedron 1986, 42, 6573.
doi: 10.1016/S0040-4020(01)82098-6 pmid: 24758360 |
(b) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307.
pmid: 24758360 |
|
(c) Nicolaou, K. C.; Ellery, S. P.; Chen, J. Angew. Chem., Int. Ed. 2009, 48, 7140.
doi: 10.1002/anie.200902151 pmid: 24758360 |
|
(d) Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371.
pmid: 24758360 |
|
(e) Szostak, M.; Procter, D. J. Angew. Chem., Int. Ed. 2012, 51, 9238.
doi: 10.1002/anie.201201065 pmid: 24758360 |
|
(f) Gopalaiah, K.; Kagan, H. B. Chem. Rec. 2013, 13, 187.
doi: 10.1002/tcr.v13.2 pmid: 24758360 |
|
(g) Szostak, M.; Spain, M.; Procter, D. J. Chem. Soc. Rev. 2013, 42, 9155.
doi: 10.1039/c3cs60223k pmid: 24758360 |
|
(h) Szostak, M.; Fazakerley, N.; Parmar, D.; Procter, D. J. Chem. Rev. 2014, 114, 5959.
doi: 10.1021/cr400685r pmid: 24758360 |
|
[9] |
(a) Owaga, A.; Takami, N.; Sekiguchi, M.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1992, 114, 8730.
doi: 10.1021/ja00048a073 |
(b) Ogawa, A.; Nanke, T.; Takami, N.; Sekiguchi, M.; Kambe, N.; Sonoda, N. Appl. Organomet. Chem. 1995, 9, 461.
doi: 10.1002/(ISSN)1099-0739 |
|
(c) Ogawa, A.; Takami, N.; Nanke, T.; Ohya, S.; Hirao, T.; Sonoda, N. Tetrahedron 1997, 53, 12895.
doi: 10.1016/S0040-4020(97)00805-3 |
|
[10] |
(a) Just-Baringo, X.; Procter, D. J. Acc. Chem. Res. 2015, 48, 1263.
doi: 10.1021/acs.accounts.5b00083 pmid: 35417150 |
(b) Parmar, D.; Duffy, L. A.; Sadasivam, D. V.; Matsubara, H.; Bradley, P. A.; Flowers II, R. A.; Procter, D. J. J. Am. Chem. Soc. 2009, 131, 15467.
doi: 10.1021/ja906396u pmid: 35417150 |
|
(c) Szostak, M.; Spain, M.; Eberhart, A. J.; Procter, D. J. J. Am. Chem. Soc. 2014, 136, 2268.
doi: 10.1021/ja412578t pmid: 35417150 |
|
(d) Szostak, M.; Spain, M.; Procter, D. J. J. Am. Chem. Soc. 2014, 136, 8459.
doi: 10.1021/ja503494b pmid: 35417150 |
|
(e) Huq, S. R.; Shi, S.; Diao, R.; Szostak, M. J. J. Org. Chem. 2017, 82, 6528.
doi: 10.1021/acs.joc.7b00372 pmid: 35417150 |
|
(f) Péter, Á.; Crisenza, G. E. M.; Procter, D. J. J. Am. Chem. Soc. 2022, 144, 7457.
doi: 10.1021/jacs.2c02188 pmid: 35417150 |
|
[11] |
(a) Jiao, J.; Wang, X. Angew. Chem., Int. Ed. 2021, 60, 17088.
doi: 10.1002/anie.v60.31 |
(b) He, Y.; Wang, Y.; Li, S.-J.; Lan, Y.; Wang, X. Angew. Chem., Int. Ed. 2022, e202115497.
|
|
(c) Wang, Y.; Shao, Y.; Xue, X.; Wang, X. Cell Rep. Phys. Sci. 2022, 3, 101116.
|
|
For a highlight, see: (d) Wang, A.-E. H., P.-Q. Chin. J. Org. Chem. 2021, 41, 3738. (in Chinese)
doi: 10.6023/cjoc202100065 |
|
(王爱娥, 黄培强, 有机化学, 2021, 41, 3738.)
doi: 10.6023/cjoc202100065 |
|
[12] |
(a) Matteson, D. S. Tetrahedron 1989, 45, 1859.
doi: 10.1016/S0040-4020(01)80052-1 pmid: 28306251 |
(b) Barluenga, J.; Tomas-Gamasa, M.; Aznar, F.; Valdes, C. Nat. Chem. 2009, 1, 494.
doi: 10.1038/nchem.328 pmid: 28306251 |
|
(c) Peng, C.; Zhang, W.; Yan, G.; Wang, J. Org. Lett. 2009, 11, 1667.
doi: 10.1021/ol900362d pmid: 28306251 |
|
(d) Capriati, V.; Florio, S. Chem.-Eur. J. 2010, 16, 4152.
pmid: 28306251 |
|
(e) Li, H.; Zhang, Y.; Wang, J. Synthesis 2013, 45, 3090.
doi: 10.1055/s-00000084 pmid: 28306251 |
|
(f) Leonori, D.; Aggarwal, V. K.; Acc. Chem. Res. 2014, 47, 3174.
doi: 10.1021/ar5002473 pmid: 28306251 |
|
(g) Watson, C. G.; Unsworth, P. J.; Leonori, D.; Aggarwal, V. K. Lithium-Boron Chemistry: A Synergistic Strategy in Modern Synthesis, Eds.: Luisi, R.; Capriati, V., Wiley-VCH, Weinheim, 2014, pp. 397-422.
pmid: 28306251 |
|
(h) Valdés, C.; Paraja, M.; Plaza, M. Synlett 2017, 28, 2373.
doi: 10.1055/s-0036-1590868 pmid: 28306251 |
|
(i) Wang, L.; Zhang, T.; Sun, W.; He, Z.; Xia, C.; Lan, Y.; Liu, C. J. Am. Chem. Soc. 2017, 139, 5257.
doi: 10.1021/jacs.7b02518 pmid: 28306251 |
|
(j) Wang, J. Pure Appl. Chem. 2018, 90, 617.
doi: 10.1515/pac-2017-0713 pmid: 28306251 |
|
(k) Zhu, Q.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2021, 41, 661. (in Chinese)
doi: 10.6023/cjoc202010022 pmid: 28306251 |
|
(朱庆, 夏春谷, 刘超, 有机化学, 2021, 41, 661.)
doi: 10.6023/cjoc202010022 pmid: 28306251 |
|
[13] |
(a) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375.
doi: 10.1021/cr00037a011 pmid: 29039662 |
(b) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063.
pmid: 29039662 |
|
(c) Brook, M. Silicon in Organic, Organometallic and Polymer Chemistry, Wiley, New York, 2000.
pmid: 29039662 |
|
(d) Showell, G. A.; Mills, J. S. Drug Discovery Today 2003, 8, 551.
pmid: 29039662 |
|
(e) Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388.
doi: 10.1021/jm3010114 pmid: 29039662 |
|
(f) Ramesh, R.; Reddy, D. S. J. Med. Chem. 2018, 61, 3779.
doi: 10.1021/acs.jmedchem.7b00718 pmid: 29039662 |
|
[14] |
(a) Kim, J.; Hewitt, G.; Carroll, P.; Sieburth, S. M. J. Org. Chem. 2005, 70, 5781.
doi: 10.1021/jo048121v pmid: 22882079 |
(b) Nielsen, L.; Lindsay, K. B.; Faber, J.; Nielsen, N. C.; Skrydstrup, T. J. Org. Chem. 2007, 72, 10035.
pmid: 22882079 |
|
(c) Nielsen, L.; Skrydstrup, T. J. Am. Chem. Soc. 2008, 130, 13145.
doi: 10.1021/ja804720p pmid: 22882079 |
|
(d) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
doi: 10.1021/jm1013693 pmid: 22882079 |
|
(e) Madsen, J. L. H.; Andersen, T. L.; Santamaria, S.; Nagase, H.; Enghild, J. J.; Skrydstrup, T. J. Med. Chem. 2012, 55, 7900.
doi: 10.1021/jm301000k pmid: 22882079 |
|
(f) Rémond, E.; Martin, C.; Martinez, J.; Cavelier, F. Chem. Rev. 2016, 116, 11654.
doi: 10.1021/acs.chemrev.6b00122 pmid: 22882079 |
|
(g) Madsen, J. L.; Hjorringgaard, C. U.; Vad, B. S.; Otzen, D.; Skrydstrup, T. Chem.-Eur. J. 2016, 22, 8358.
pmid: 22882079 |
|
[15] |
(a) Niljianskul, N.; Zhu, S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2015, 54, 1638.
doi: 10.1002/anie.201410326 pmid: 25475991 |
(b) Kato, K.; Hirano, K.; Miura, M. Angew. Chem., Int. Ed. 2016, 55, 14400.
doi: 10.1002/anie.v55.46 pmid: 25475991 |
|
[16] |
(a) Buynak, J. D.; Geng, B. Organometallics 1995, 14, 3112.
doi: 10.1021/om00006a064 pmid: 12762671 |
(b) Sieburth, S. M.; Somers, J. J.; O'Hare, H. K. Tetrahedron 1996, 52, 5669.
doi: 10.1016/0040-4020(96)00190-1 pmid: 12762671 |
|
(c) Barberis, C.; Voyer, N. Tetrahedron Lett. 1998, 39, 6807.
doi: 10.1016/S0040-4039(98)01463-4 pmid: 12762671 |
|
(d) Sieburth, S. M.; O'Hare, H. K.; Xu, J.; Chen, Y.; Liu, G. Org. Lett. 2003, 5, 1859.
pmid: 12762671 |
|
[17] |
(a) Mutahi, M. w.; Nittoli, T.; Guo, L.; Sieburth, S. M. J. Am. Chem. Soc. 2002, 124, 7363.
doi: 10.1021/ja026158w pmid: 20670017 |
(b) Ballweg, D. M.; Miller, R. C.; Gray, D. L.; Scheidt, K. A. Org. Lett. 2005, 7, 1403.
pmid: 20670017 |
|
(c) Nielsen, L.; Lindsay, K. B.; Faber, J.; Nielsen, N. C.; Skrydstrup, T. J. Org. Chem. 2007, 72, 10035.
pmid: 20670017 |
|
(d) Hernández, D.; Nielsen, L.; Lindsay, K. B.; Ángeles López- García, M.; Bjerglund, K.; Skrydstrup, T. Org. Lett. 2010, 12, 3528.
doi: 10.1021/ol101379t pmid: 20670017 |
|
(e) Bo, Y.; Singh, S.; Duong, H. Q.; Cao, C.; Sieburth, S. M. Org. Lett. 2011, 13, 1787.
doi: 10.1021/ol2002978 pmid: 20670017 |
|
(f) Singh, S.; Sieburth, S. M. Org. Lett. 2012, 14, 4422.
doi: 10.1021/ol301933n pmid: 20670017 |
|
(g) Min, G. K.; Hernández, D.; Skrydstrup, T. Acc. Chem. Res. 2013, 46, 457.
doi: 10.1021/ar300200h pmid: 20670017 |
|
(h) Madsen, J. L.; Hjorringgaard, C. U.; Vad, B. S.; Otzen, D.; Skrydstrup, T. Chem.-Eur. J. 2016, 22, 8358.
pmid: 20670017 |
|
[18] |
(a) Vyas, D. J.; Fröhlich, R.; Oestreich, M. Org. Lett. 2011, 13, 2094.
doi: 10.1021/ol200509c |
(b) Hensel, A.; Nagura, K.; Delvos, L. B.; Oestreich, M. Angew. Chem., Int. Ed. 2014, 53, 4964.
doi: 10.1002/anie.201402086 |
|
(c) Mita, T.; Sugawara, M.; Saito, K.; Sato, Y. Org. Lett. 2014, 16, 3028.
doi: 10.1021/ol501143c |
|
(d) Zhao, C.; Jiang, C.; Wang, J.; Wu, C.; Zhang, Q.-W.; He, W. Asian J. Org. Chem. 2014, 3, 851.
doi: 10.1002/ajoc.v3.8 |
|
(e) Chen, Z.; Huo, Y.; An, P.; Wang, X.; Song, C.; Ma, Y. Org. Chem. Front. 2016, 3, 1725.
doi: 10.1039/C6QO00386A |
|
(f) Feng, J. J.; Oestreich, M. Org. Lett. 2018, 20, 4273.
doi: 10.1021/acs.orglett.8b01698 |
|
(g) Feng, J. J.; Mao, W.; Zhang, L.; Oestreich, M. Chem. Soc. Rev. 2021, 50, 2010.
doi: 10.1039/D0CS00965B |
|
(h) Xue, W.; Oestreich, M. ACS Cent. Sci. 2020, 6, 1070.
doi: 10.1021/acscentsci.0c00738 |
|
[19] |
Yu, X.; Daniliuc, C. G.; Alasmary, F. A.; Studer, A. Angew. Chem., Int. Ed. 2021, 60, 23335.
doi: 10.1002/anie.v60.43 |
[20] |
Jiao, J.; Yang, W.; Wang, X. J. Org. Chem. 2023, 88, 1594.
|
[21] |
(a) He, Y.; Wang, X. Org. Lett. 2021, 23, 225.
doi: 10.1021/acs.orglett.0c03953 |
(b) Li, Z.; Zhao, F.; Ou, W.; Huang, P.-Q.; Wang, X. Angew. Chem., Int. Ed. 2021, 60, 26604.
doi: 10.1002/anie.v60.51 |
|
(c) Jiang, F.; Zhao, F.; He, Y.; Luo, X.; Wang, X. Cell Rep. Phys. Sci. 2022, 3, 100955.
|
|
(d) Zhao, F.; Jiang, F.; Wang, X. Sci. China Chem. 2022, 65, 2231.
doi: 10.1007/s11426-022-1331-y |
|
[22] |
Zhou, L.; Qiu, J.; Wang, C.; Zhang, F.; Yang, K.; Song, Q. Org. Lett. 2022, 24, 3249.
doi: 10.1021/acs.orglett.2c01041 |
[23] |
(a) Machrouhi, F.; Hamann, B.; Namy, J.-L.; Kagan, H. B. Synlett 1996, 633.
|
(b) Machrouhi, F.; Namy, J.-L. Tetrahedron Lett. 1999, 40, 1315.
doi: 10.1016/S0040-4039(98)02673-2 |
|
(c) Dahlén, A.; Hilmersson, G. Eur. Inorg. Chem. 2004, 3393.
|
|
(d) Flowers II, R. A. Synlett 2008, 10, 1427.
|
|
(e) Szostak, M.; Spain, M.; Parmar, D.; Procter, D. J. Chem. Commun. 2012, 48, 330.
doi: 10.1039/C1CC14252F |
|
[24] |
(a) Shabangi, M.; Flowers II, R. A. Tetrahedron Lett. 1997, 38, 1137.
doi: 10.1016/S0040-4039(97)00008-7 pmid: 22893612 |
(b) Shabangi, M.; Sealy, J. M.; Fuchs, J. R.; Flowers II, R. A. Tetrahedron Lett. 1998, 39, 4429.
doi: 10.1016/S0040-4039(98)00839-9 pmid: 22893612 |
|
(c) Szostak, M.; Procter, D. J. Angew. Chem., Int. Ed. 2012, 51, 9238.
doi: 10.1002/anie.201201065 pmid: 22893612 |
|
(d) Boyd, E. A.; Peters, J. C. J. Am. Chem. Soc. 2022, 144, 21337.
doi: 10.1021/jacs.2c09580 pmid: 22893612 |
[1] | Baochang Gao, Yu Shi, Yuan Tian, Zhiguo Zhang, Jingru Zhang, Yufeng Sun, Guoliang Mao, Lingyan Dai. Synthesis of 4-Methyl-2-oxo-6-arylamino-2H-pyran-3-carbonitrile Derivatives [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 644-649. |
[2] | Suyan Tao, Zixin Xiang, Junjie Bai, Xiao Wan, Xiaobing Wan. Amide Hydrolysis Reaction Using tert-Butyl Nitrite [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 550-560. |
[3] | Gangzhong Jiang, Jiaxing Lin, Xiaoguang Bao, Xiaobing Wan. Isoamyl Nitrite Activated Primary Sulfonamide to Sulfonyl Bromide and Sulfonyl Chloride [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 533-549. |
[4] | Yang Li, Yanan Dong, Yuehui Li. Efficient Synthesis of Nitrile Compounds through Amide Conversion via N-Boroamide Intermediates [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 638-643. |
[5] | Penghui Li, Qingyang Xie, Fuxian Wan, Yuanhong Zhang, Lin Jiang. Synthesis and Fungicidal Activity of Novel Substituted Pyrimidine-5-carboxamides Bearing Cyclopropyl Moiety [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 650-656. |
[6] | Zhiyou Huang, Ping Yang, Bo He, Wenxia Ou, Siyu Yuan. Design and Synthesis of Morpholine Sulfonamide Compound and Its Inhibition on Soybean Seed Germination [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 309-315. |
[7] | Lijun Xu, Zongjun Li, Fushe Han, Xiang Gao. N,N-Dimethylformamide-Promoted Synthesis of Fullerene-Fused Oxazoline Derivatives [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 242-250. |
[8] | Bozhen Wang, Jie Zhang, Chunhui Nian, Mingming Jin, Miaomiao Kong, Wulan Li, Wenfei He, Jianzhang Wu. Synthesis and Antitumor Activity of 3,4-Dichlorophenyl Amides [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 232-241. |
[9] | Wenfeng Bei, Jian Pan, Dongmei Ran, Yilin Liu, Zhen Yang, Ruokun Feng. Cobalt-Catalyzed [4+2] Annulation of Indole Carboxamide with Diynes and Monoacetylene: Direct Access to γ-Carbolinones [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3226-3238. |
[10] | Wei Xu, Hongbin Zhai, Bin Cheng, Taimin Wang. Visible Light-Induced Pd-Catalyzed Heck Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3035-3054. |
[11] | Jing Tang, Wenkun Luo, Jun Zhou. Advances in the Synthesis of Azaspiro[4.5]trienones [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3006-3034. |
[12] | Xiaona Yang, Hongyu Guo, Rong Zhou. Progress in Visible-Light Promoted Transformations of Organosilicon Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2720-2742. |
[13] | Zhijun Ren, Weiwei Luo, Jun Zhou. Recent Progress in Silver-Mediated Tandem Cyclization of N-Arylacrylamides [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2026-2039. |
[14] | Yu Wang, Yifang Chen, Xin Luo, Zhifu Xing, Ju Peng, Jixiang Chen. Design, Synthesis and Nematicidal Activity of Novel 2-Cyanoacrylate (Amide) Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2206-2216. |
[15] | Zichan Zhang, Yang Sun, Sheng Hua, Baolin Xu, Min Zhang, Qin Zhao, Dandan Zheng, Yang Wang, Jianfeng Ju, Yujun Shi, Hong Dai. Synthesis and Insecticidal Activity of Novel Pyrazole Amides Containing an Isoxazole Moiety [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1435-1443. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||