Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (5): 1804-1820.DOI: 10.6023/cjoc202010004 Previous Articles Next Articles
REVIEWS
江婷a, 蒲洪a, 段燕文a,b,c, 颜晓晖a,d, 黄勇a,c,*()
收稿日期:
2020-10-05
修回日期:
2020-11-24
发布日期:
2020-12-19
通讯作者:
黄勇
基金资助:
Ting Jianga, Hong Pua, Yanwen Duana,b,c, Xiaohui Yana,d, Yong Huanga,c,*()
Received:
2020-10-05
Revised:
2020-11-24
Published:
2020-12-19
Contact:
Yong Huang
About author:
Supported by:
Share
Ting Jiang, Hong Pu, Yanwen Duan, Xiaohui Yan, Yong Huang. New Natural Products of Streptomyces Sourced from Deep-Sea, Desert, Volcanic, and Polar Regions from 2009 to 2020[J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1804-1820.
Compd. | Source | Bioactivity (MIC or IC50) | Depth/m | Region | Year |
---|---|---|---|---|---|
Caboxamycin (1) | NTK 937 | B. subtilis/S. lentus: 8~20 μmol?L –1 AGS/ HepG2/MCF-7: 28.6~29.4 μmol?L –1 | 3814 | Canary Basin | 2009[ |
Benzoxacystol (2) | NTK 935 | Inhibitory activity against glycogen synthase kinase-3β | 3814 | Canary Basin | 2011[ |
3'-hydroxycaboxamycin (3) | NTK 937 | — | 3814 | Canary Basin | 2017[ |
Ammosamides A/B (4/5) | CNR-698 | HCT-116: 320 nmol?L–1 | 1618 | Bahamas | 2009[ |
Lobophorins E/F (6/7) | SCSIO 01127 | S. aureus/E. faecalis: 8 μg/mL ( 6) SF-268/ MCF-7/H460: 2.93~6.82 μmol?L –1 (7) | 135 | South China Sea | 2011[ |
Lobophorins G (8) | MS100061 | BCG: 1.56 μg/mL B. subtilis: 3.125 μg/mL M. tuberculosisH37Rv: 16 μg/mL | NA | South China Sea | 2013[ |
Lobophorins H/I (9/10) | 12A35 | B. subtilisCMCC 63501: 1.57 μg/mL (9) 50 μg/mL ( 10) | 2134 | South China Sea | 2013[ |
Lobophorins J (11) | 12A35 | — | 2134 | South China Sea | 2015[ |
Lobophorin K (12) | M-207 | S. aureus: 40~80 μg/mL MiaPaca-2/ MCF-7/THLE-2: 6.3~34.0 μmol?L –1 | 180 | Cantabrian Sea | 2017[ |
Lobophorin L/M (13/14) | 4506 | M. luteus/B. huringiensis: 4~8 μg/mL (13) | NA | South China Sea | 2020[ |
Spiroindimicins A~D (15~18) | SCSIO 03032 | CCRF-CEM/B16/H460: 4~12 μg/mL (except 15) | 3412 | Indian Ocean | 2012[ |
Spiroindimicins G/H (19/20) | SCSIO 03032 | SF-268/MCF-7/HepG2/A549: 10.28~ 33.02 μmol?L –1 | 3412 | South China Sea | 2019[ |
Indinicins A~E (21~25) | SCSIO 03032 | SF-268/MCF-7/H460/HepG2: 9.7~ 44.6 μmol?L –1 | 3412 | Indian Ocean | 2014[ |
Indinicins F/G (26/27) | SCSIO 03032 | — | 3412 | Indian Ocean | 2019[ |
Lynamicins F/G (28/29) | SCSIO 03032 | SF-268/H460/HepG2/MCF-7: >100 μmol?L–1 | 3412 | Indian Ocean | 2014[ |
Heronamides D~F (30~32) | SCSIO 03032 | — | 3412 | Indian Ocean | 2014[ |
Dionemycin (33)/34 | SCSIO 11791 | S. aureus ATCC 29213/MRSA:0.5~2 μg/mL H460/MDA-MB-231/HCT-116/ HepG2/MCF10A: 3.1~11.2 μmol?L –1 | 1765 | South China Sea | 2020[ |
Grincamycins B~F (35~39) | SCSIO LR32 | HepG2/SW-1990/HeLa/H460/MCF-7/ B16: 1.1~31 μmol?L –1 (except 39) | 3370 | South China Sea | 2012[ |
Grincamycins G/H (40/41) | SCSIO LR32 | Jurkat T-cell: 3.0 μmol?L –1 (41) | 3370 | South China Sea | 2012[ |
Grincamycins I~K (42~44) | SCSIO LR32 | MDA?MB?435/MDA?MB?231/H460/ HCT-116/HepG2/MCF10A: 2.43~ 25.87 μmol?L –1 | 3370 | South China Sea | 2018[ |
Marfuraquinocins A~D (45~48) | SCSIO 3406 | S. aureus ATCC 29213/MRSE: 8~64 μg/mL SF268/ MCF-7/H460/HepG2: 3.6~26.9 μmol?L –1 | 3536 | South China Sea | 2013[ |
Phenaziterpenes A~B (49/50) | SCSIO 3406 | A. hydrophila ATCC 7966: 64 μg/mL (49) SF268/MCF-7/HepG2: 9.3~54.5 μmol?L–1 | 3536 | South China Sea | 2013[ |
Sungsanpin (51) | SNJ013 | Inhibitory activity against A549 | 138 | Jeju Island | 2013[ |
Strepsesquitriol (52) | SCSIO 10355 | Inhibitory activity against lipopoly saccharide induced TNFα production | 3412 | Indian Ocean | 2013[ |
Compd. | Source | Bioactivity (MIC or IC50) | Depth/m | Region | Year |
Tetroazolemycins A/B (53/54) | FXJ8.012 | K. pneumoniae/Metal ion-binding activity | NA | Indian Ocean | 2013[ |
Mycemycins C~E (55~57) | FXJ8.012 | Anti-HIV-1 reverse transcriptase activity | NA | Indian Ocean | 2015[ |
Champacyclin (58) | C42 | Erwinia amylovora: 25 μmol?L –1 | 241 | Baltic Sea | 2013[ |
Xiamenmycins C/D (59/60) | M1-94P | WI26: 15 μg/mL/30 μg/mL | 2628 | Pacific | 2013[ |
Desotamides B~D (61~63) | SCSIO ZJ46 | S. pnuemoniae NCTC 7466/S. aureus ATCC 29213/MRSE Shhs-E1: 12.5~32.0 μg/mL | 3536 | South China Sea | 2014[ |
Bafilomycins B1/C1(64/65) | NA4 | Inhibitory activities against Fusarium spp. and R. solani | 1464 | South China Sea | 2015[ |
Marformycins A~F (66~71) | SCSIO 10141 | M. luteus: 0.06~4.0 μg/mL | 1396 | South China Sea | 2014[ |
Marangucyclines A/B (72/73) | SCSIO 11594 | E. faecalisATCC29212: 64.0 μg/mL A594/CNE2/HepG2/MCF-7: 0.24~ 0.56 μmol?L –1 (73) | 2403 | South China Sea | 2015[ |
74/75 | PKU-MA01297 | — | 3202 | Indian Ocean | 2019[ |
76 | SCSIO 04496 | — | 3536 | South China Sea | 2016[ |
Tunicamycin E (77) | SCSIO S15077 | B. thuringiensis/C. albicans CMCC (F) 98001/C. albicans ATCC 96901: 0.5~ 32 μg /mL | 3536 | South China Sea | 2018[ |
Atratumycin (78) | SCSIO ZH16 | M. tuberculosis H37Ra/H37Rv: 3.8/ 14.6 μmol?L –1 | 3536 | South China Sea | 2019[ |
79/80 | OUCMBZ-4112 | — | 2206 | South China Sea | 2016[ |
81 | OUCMDZ-2167 | — | 2061 | South China Sea | 2016[ |
Butenolids 1/2 (82/83) | TP-A0873 | Peroxisome proliferator activated receptor- PPARα agonists | NA | Toyama Bay | 2014[ |
Ahpatinins Ac/Pr (84/85) | ACT232 | Aspartic protease inhibitors: 0.01~0.05 μmol?L–1 | 1174 | Sagami Bay | 2014[ |
Fradiamines A/B (86/87) | MM456M-F7 | Clostridium dif?cile: 8~32 μg/mL | 806 | Sagami Bay | 2017[ |
88~90 | M-157 | HepG2: 51.5 μmol?L –1 | 2000 | Cantabrian Sea | 2018[ |
Anthracimycin B (91) | M-169 | S. aureus MB5393/S. aureus ATCC29213/ E. faecium CL144754/E. faecalisCL144492 0.125~8.0 μmol?L –1 | 1500 | Cantabrian Sea | 2018[ |
Flaviogeranins B~D (92~94) | B9173 | S. aureus/M. smegmatis: 5.0~35.7 μg/mL A549/Hela: 0.4~50.2 μmol?L –1 | NA | Pacific Ocean | 2020[ |
Compd. | Source | Bioactivity (MIC or IC50) | Depth/m | Region | Year |
---|---|---|---|---|---|
Caboxamycin (1) | NTK 937 | B. subtilis/S. lentus: 8~20 μmol?L –1 AGS/ HepG2/MCF-7: 28.6~29.4 μmol?L –1 | 3814 | Canary Basin | 2009[ |
Benzoxacystol (2) | NTK 935 | Inhibitory activity against glycogen synthase kinase-3β | 3814 | Canary Basin | 2011[ |
3'-hydroxycaboxamycin (3) | NTK 937 | — | 3814 | Canary Basin | 2017[ |
Ammosamides A/B (4/5) | CNR-698 | HCT-116: 320 nmol?L–1 | 1618 | Bahamas | 2009[ |
Lobophorins E/F (6/7) | SCSIO 01127 | S. aureus/E. faecalis: 8 μg/mL ( 6) SF-268/ MCF-7/H460: 2.93~6.82 μmol?L –1 (7) | 135 | South China Sea | 2011[ |
Lobophorins G (8) | MS100061 | BCG: 1.56 μg/mL B. subtilis: 3.125 μg/mL M. tuberculosisH37Rv: 16 μg/mL | NA | South China Sea | 2013[ |
Lobophorins H/I (9/10) | 12A35 | B. subtilisCMCC 63501: 1.57 μg/mL (9) 50 μg/mL ( 10) | 2134 | South China Sea | 2013[ |
Lobophorins J (11) | 12A35 | — | 2134 | South China Sea | 2015[ |
Lobophorin K (12) | M-207 | S. aureus: 40~80 μg/mL MiaPaca-2/ MCF-7/THLE-2: 6.3~34.0 μmol?L –1 | 180 | Cantabrian Sea | 2017[ |
Lobophorin L/M (13/14) | 4506 | M. luteus/B. huringiensis: 4~8 μg/mL (13) | NA | South China Sea | 2020[ |
Spiroindimicins A~D (15~18) | SCSIO 03032 | CCRF-CEM/B16/H460: 4~12 μg/mL (except 15) | 3412 | Indian Ocean | 2012[ |
Spiroindimicins G/H (19/20) | SCSIO 03032 | SF-268/MCF-7/HepG2/A549: 10.28~ 33.02 μmol?L –1 | 3412 | South China Sea | 2019[ |
Indinicins A~E (21~25) | SCSIO 03032 | SF-268/MCF-7/H460/HepG2: 9.7~ 44.6 μmol?L –1 | 3412 | Indian Ocean | 2014[ |
Indinicins F/G (26/27) | SCSIO 03032 | — | 3412 | Indian Ocean | 2019[ |
Lynamicins F/G (28/29) | SCSIO 03032 | SF-268/H460/HepG2/MCF-7: >100 μmol?L–1 | 3412 | Indian Ocean | 2014[ |
Heronamides D~F (30~32) | SCSIO 03032 | — | 3412 | Indian Ocean | 2014[ |
Dionemycin (33)/34 | SCSIO 11791 | S. aureus ATCC 29213/MRSA:0.5~2 μg/mL H460/MDA-MB-231/HCT-116/ HepG2/MCF10A: 3.1~11.2 μmol?L –1 | 1765 | South China Sea | 2020[ |
Grincamycins B~F (35~39) | SCSIO LR32 | HepG2/SW-1990/HeLa/H460/MCF-7/ B16: 1.1~31 μmol?L –1 (except 39) | 3370 | South China Sea | 2012[ |
Grincamycins G/H (40/41) | SCSIO LR32 | Jurkat T-cell: 3.0 μmol?L –1 (41) | 3370 | South China Sea | 2012[ |
Grincamycins I~K (42~44) | SCSIO LR32 | MDA?MB?435/MDA?MB?231/H460/ HCT-116/HepG2/MCF10A: 2.43~ 25.87 μmol?L –1 | 3370 | South China Sea | 2018[ |
Marfuraquinocins A~D (45~48) | SCSIO 3406 | S. aureus ATCC 29213/MRSE: 8~64 μg/mL SF268/ MCF-7/H460/HepG2: 3.6~26.9 μmol?L –1 | 3536 | South China Sea | 2013[ |
Phenaziterpenes A~B (49/50) | SCSIO 3406 | A. hydrophila ATCC 7966: 64 μg/mL (49) SF268/MCF-7/HepG2: 9.3~54.5 μmol?L–1 | 3536 | South China Sea | 2013[ |
Sungsanpin (51) | SNJ013 | Inhibitory activity against A549 | 138 | Jeju Island | 2013[ |
Strepsesquitriol (52) | SCSIO 10355 | Inhibitory activity against lipopoly saccharide induced TNFα production | 3412 | Indian Ocean | 2013[ |
Compd. | Source | Bioactivity (MIC or IC50) | Depth/m | Region | Year |
Tetroazolemycins A/B (53/54) | FXJ8.012 | K. pneumoniae/Metal ion-binding activity | NA | Indian Ocean | 2013[ |
Mycemycins C~E (55~57) | FXJ8.012 | Anti-HIV-1 reverse transcriptase activity | NA | Indian Ocean | 2015[ |
Champacyclin (58) | C42 | Erwinia amylovora: 25 μmol?L –1 | 241 | Baltic Sea | 2013[ |
Xiamenmycins C/D (59/60) | M1-94P | WI26: 15 μg/mL/30 μg/mL | 2628 | Pacific | 2013[ |
Desotamides B~D (61~63) | SCSIO ZJ46 | S. pnuemoniae NCTC 7466/S. aureus ATCC 29213/MRSE Shhs-E1: 12.5~32.0 μg/mL | 3536 | South China Sea | 2014[ |
Bafilomycins B1/C1(64/65) | NA4 | Inhibitory activities against Fusarium spp. and R. solani | 1464 | South China Sea | 2015[ |
Marformycins A~F (66~71) | SCSIO 10141 | M. luteus: 0.06~4.0 μg/mL | 1396 | South China Sea | 2014[ |
Marangucyclines A/B (72/73) | SCSIO 11594 | E. faecalisATCC29212: 64.0 μg/mL A594/CNE2/HepG2/MCF-7: 0.24~ 0.56 μmol?L –1 (73) | 2403 | South China Sea | 2015[ |
74/75 | PKU-MA01297 | — | 3202 | Indian Ocean | 2019[ |
76 | SCSIO 04496 | — | 3536 | South China Sea | 2016[ |
Tunicamycin E (77) | SCSIO S15077 | B. thuringiensis/C. albicans CMCC (F) 98001/C. albicans ATCC 96901: 0.5~ 32 μg /mL | 3536 | South China Sea | 2018[ |
Atratumycin (78) | SCSIO ZH16 | M. tuberculosis H37Ra/H37Rv: 3.8/ 14.6 μmol?L –1 | 3536 | South China Sea | 2019[ |
79/80 | OUCMBZ-4112 | — | 2206 | South China Sea | 2016[ |
81 | OUCMDZ-2167 | — | 2061 | South China Sea | 2016[ |
Butenolids 1/2 (82/83) | TP-A0873 | Peroxisome proliferator activated receptor- PPARα agonists | NA | Toyama Bay | 2014[ |
Ahpatinins Ac/Pr (84/85) | ACT232 | Aspartic protease inhibitors: 0.01~0.05 μmol?L–1 | 1174 | Sagami Bay | 2014[ |
Fradiamines A/B (86/87) | MM456M-F7 | Clostridium dif?cile: 8~32 μg/mL | 806 | Sagami Bay | 2017[ |
88~90 | M-157 | HepG2: 51.5 μmol?L –1 | 2000 | Cantabrian Sea | 2018[ |
Anthracimycin B (91) | M-169 | S. aureus MB5393/S. aureus ATCC29213/ E. faecium CL144754/E. faecalisCL144492 0.125~8.0 μmol?L –1 | 1500 | Cantabrian Sea | 2018[ |
Flaviogeranins B~D (92~94) | B9173 | S. aureus/M. smegmatis: 5.0~35.7 μg/mL A549/Hela: 0.4~50.2 μmol?L –1 | NA | Pacific Ocean | 2020[ |
Compd. | Source | Activity (MIC or IC50) | Region | Time |
---|---|---|---|---|
Chaxalactins A~C (95~97) | C34 | S. aureus: <1 μg/mL L. monocytogenes/ B. subtilis: 3~6 μg/mL | Atacama | 2011[ |
Chaxamycins A~D (98~101) | C34 | S. aureusATCC 25923: 0.05 μg/mL ( 101) MRSA: <1 μg/mL ( 101) | Atacama | 2011[ |
Atacamycins A~C (102~104) | C38 | R.solanacearum/PDE-4B2 Enzyme inhibitor: 1.30~4.07 μmol?L –1/antiproliferative | Atacama | 2011[ |
Abenquines A~D (105~109) | DB634 | Enzyme inhibitor for phosphodiesterase type 4b | Atacama | 2011[ |
Luteoride D (110)/Pseurotin G (111) | C34+MR2012 | — | Atacama | 2017[ |
Asenjonamides A~C (112~114) | KNN 42.f | S. aureus/B. subtilis/E. coli/E. faecalis/M. smegmatis: 1.8~17.3 μg/mL | Atacama | 2018[ |
Chaxapeptin (115) | C58 | Inhibitory activity against A549 | Atacama | 2015[ |
Leepeptin (116) | C34T | — | Atacama | 2019[ |
Huascopeptin (117) | HST28T | — | Atacama | 2020[ |
118 | WAB9 | Pseudomonas aeruginosa IPA1: 10 μg/mL | Saharan | 2015[ |
Pyridine-2,5-diacetamide (119) | DA3-7 | E. coliATCC 10536/C.neoformansATCC 90113: 31.25 μg/mL | Saudi Arabian | 2018[ |
Grincamycins L~N (120~122) | XZHG99 T | A549/H157/MCF-7/MDA-MB-231/ HepG2: 1.92~9.12 μmol?L –1 | Color desert | 2018[ |
Compd. | Source | Activity (MIC or IC50) | Region | Time |
---|---|---|---|---|
Chaxalactins A~C (95~97) | C34 | S. aureus: <1 μg/mL L. monocytogenes/ B. subtilis: 3~6 μg/mL | Atacama | 2011[ |
Chaxamycins A~D (98~101) | C34 | S. aureusATCC 25923: 0.05 μg/mL ( 101) MRSA: <1 μg/mL ( 101) | Atacama | 2011[ |
Atacamycins A~C (102~104) | C38 | R.solanacearum/PDE-4B2 Enzyme inhibitor: 1.30~4.07 μmol?L –1/antiproliferative | Atacama | 2011[ |
Abenquines A~D (105~109) | DB634 | Enzyme inhibitor for phosphodiesterase type 4b | Atacama | 2011[ |
Luteoride D (110)/Pseurotin G (111) | C34+MR2012 | — | Atacama | 2017[ |
Asenjonamides A~C (112~114) | KNN 42.f | S. aureus/B. subtilis/E. coli/E. faecalis/M. smegmatis: 1.8~17.3 μg/mL | Atacama | 2018[ |
Chaxapeptin (115) | C58 | Inhibitory activity against A549 | Atacama | 2015[ |
Leepeptin (116) | C34T | — | Atacama | 2019[ |
Huascopeptin (117) | HST28T | — | Atacama | 2020[ |
118 | WAB9 | Pseudomonas aeruginosa IPA1: 10 μg/mL | Saharan | 2015[ |
Pyridine-2,5-diacetamide (119) | DA3-7 | E. coliATCC 10536/C.neoformansATCC 90113: 31.25 μg/mL | Saudi Arabian | 2018[ |
Grincamycins L~N (120~122) | XZHG99 T | A549/H157/MCF-7/MDA-MB-231/ HepG2: 1.92~9.12 μmol?L –1 | Color desert | 2018[ |
Compd. | Streptomyces sp. | Activity (MIC or IC50) | Region | Time |
---|---|---|---|---|
Ohmyungsamycins A/B (123/124) | SNJ042 | M. tuberculosis H37Rv: 33.3/108.3 nmol?L–1, HCT-116/A549/SNΜ-638/ MDA-MB-231: 359~816 nmol?L–1 (123) | Korean volcanic | 2013[ |
Pontemazines A/B (125/126) | ΜT1123 | Protective effect on HT-22 mouse hippocampal neuronal cells | Korean volcanic | 2015[ |
Ulleungdin (127) | KCB13F003 | Inhibitory activity against A549 | Korean volcanic | 2018[ |
Donghaesulfins A/B (128/129) | SΜD119 | Induced quinone reductase activity/ antiangiogenesis | Korean volcanic | 2019[ |
Donghaecyclinones A~C (130~132) | SUD119 | HCT116/MDA-MB231/SNU638/A549/ SK-HEP1: 6.0~28.9 μnmol?L –1 | Korean volcanic | 2020[ |
Compd. | Streptomyces sp. | Activity (MIC or IC50) | Region | Time |
---|---|---|---|---|
Ohmyungsamycins A/B (123/124) | SNJ042 | M. tuberculosis H37Rv: 33.3/108.3 nmol?L–1, HCT-116/A549/SNΜ-638/ MDA-MB-231: 359~816 nmol?L–1 (123) | Korean volcanic | 2013[ |
Pontemazines A/B (125/126) | ΜT1123 | Protective effect on HT-22 mouse hippocampal neuronal cells | Korean volcanic | 2015[ |
Ulleungdin (127) | KCB13F003 | Inhibitory activity against A549 | Korean volcanic | 2018[ |
Donghaesulfins A/B (128/129) | SΜD119 | Induced quinone reductase activity/ antiangiogenesis | Korean volcanic | 2019[ |
Donghaecyclinones A~C (130~132) | SUD119 | HCT116/MDA-MB231/SNU638/A549/ SK-HEP1: 6.0~28.9 μnmol?L –1 | Korean volcanic | 2020[ |
Compd. | Source | Activity (MIC or IC50) | Region | Time |
---|---|---|---|---|
Nitrosporeusines A/B (133/134) | NitrosporeusCQT14-24 | Inhibit H1N1 virus | Arctic | 2013[ |
135/136 | CavourensisYY01-17 | — | Antarctic | 2013[ |
Nitrosporeunols A~G (137~143) | nitrosporeus YBH10-5 | — | Arctic | 2014[ |
Arcticoside (144) C-1027 chromophore-V (145) | ART5 | MDA-MB231/HCT-116: 0.9~2.7 μmol?L –1 (94) | Arctic | 2014[ |
146~148 | 623F | — | Arctic | 2015[ |
149 | NJES13 | — | Antarctic | 2015[ |
Antartin (150) | SCO736 | A549/H1299/U87 | Antarctic | 2018[ |
Cyclamenols B~D (151~153) | OUCMDZ-4348 | N87: 10.8 μmol?L –1 (151) | Antarctic | 2019[ |
Cyclamenols E~F (154~155) | OUCMDZ-4348 | N87: 9.8 μmol?L –1 (154) | Antarctic | 2020[ |
Compd. | Source | Activity (MIC or IC50) | Region | Time |
---|---|---|---|---|
Nitrosporeusines A/B (133/134) | NitrosporeusCQT14-24 | Inhibit H1N1 virus | Arctic | 2013[ |
135/136 | CavourensisYY01-17 | — | Antarctic | 2013[ |
Nitrosporeunols A~G (137~143) | nitrosporeus YBH10-5 | — | Arctic | 2014[ |
Arcticoside (144) C-1027 chromophore-V (145) | ART5 | MDA-MB231/HCT-116: 0.9~2.7 μmol?L –1 (94) | Arctic | 2014[ |
146~148 | 623F | — | Arctic | 2015[ |
149 | NJES13 | — | Antarctic | 2015[ |
Antartin (150) | SCO736 | A549/H1299/U87 | Antarctic | 2018[ |
Cyclamenols B~D (151~153) | OUCMDZ-4348 | N87: 10.8 μmol?L –1 (151) | Antarctic | 2019[ |
Cyclamenols E~F (154~155) | OUCMDZ-4348 | N87: 9.8 μmol?L –1 (154) | Antarctic | 2020[ |
[1] |
Castro, J. F.; Razmilic, V.; Gomez-Escribano, J. P.; Andrews, B.; Asenjo, J.; Bibb, M. Antonie Van Leeuwenhoek 2018, 111, 1433.
doi: 10.1007/s10482-018-1034-8 |
[2] |
Procopio, R. E.; Silva, I. R.; Martins, M. K.; Azevedo, J. L.; Araujo, J. M. Braz. J. Infect. Dis. 2012, 16, 466.
doi: 10.1016/j.bjid.2012.08.014 |
[3] |
Berdy, J. J. Antibiot. (Tokyo) 2005, 58, 1.
doi: 10.1038/ja.2005.1 |
[4] |
Chen, S.; Kinney, W. A.; Van Lanen, S. World J. Microbiol. Biotechnol. 2017,33.
|
[5] |
Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2020, 83, 770.
doi: 10.1021/acs.jnatprod.9b01285 |
[6] |
Mogul, R.; Vaishampayan, P.; Bashir, M.; McKay, C. P.; Schubert, K.; Bornaccorsi, R.; Gomez, E.; Tharayil, S.; Payton, G.; Capra, J.; Andaya, J.; Bacon, L.; Bargoma, E.; Black, D.; Boos, K.; Brant, M.; Chabot, M.; Chau, D.; Cisneros, J.; Chu, G.; Curnutt, J.; DiMizio, J.; Engelbrecht, C.; Gott, C.; Harnoto, R.; Hovanesian, R.; Johnson, S.; Lavergne, B.; Martinez, G.; Mans, P.; Morales, E.; Oei, A.; Peplow, G.; Piaget, R.; Ponce, N.; Renteria, E.; Rodriguez, V.; Rodriguez, J.; Santander, M.; Sarmiento, K.; Scheppelmann, A.; Schroter, G.; Sexton, D.; Stephenson, J.; Symer, K.; Russo-Tait, T.; Weigel, B.; Wilhelm, M. B. Front. Microbiol. 2017, 8, 1974.
doi: 10.3389/fmicb.2017.01974 |
[7] |
Lewis, K. Cell 2020, 181, 29.
doi: S0092-8674(20)30233-6 pmid: 32197064 |
[8] |
Berdy, J. J. Antibiot. (Tokyo) 2012, 65, 385.
doi: 10.1038/ja.2012.27 |
[9] |
Hutchings, M. I.; Truman, A. W.; Wilkinson, B. Curr. Opin. Microbiol. 2019, 51, 72.
doi: 10.1016/j.mib.2019.10.008 |
[10] |
Sayed, A. M.; Hassan, M. H. A.; Alhadrami, H. A.; Hassan, H. M.; Goodfellow, M.; Rateb, M. E. J. Appl. Microbiol. 2020, 128, 630.
doi: 10.1111/jam.14386 |
[11] |
Kamjam, M.; Sivalingam, P.; Deng, Z.; Hong, K. Front. Microbiol. 2017,8.
|
[12] |
Yang, Z.; He, J.; Wei, X.; Ju, J.; Ma, J. Appl. Microbiol. Biotechnol. 2020, 104, 67.
doi: 10.1007/s00253-019-10227-0 |
[13] |
Zhao, Y.-C.; Zhu, T.-H.; Zhu, W.-M.; Chin. J. Org. Chem. 2013, 33, 1195. (in Chinese).
doi: 10.6023/cjoc201304039 |
(赵成英, 朱统汉, 朱伟明, 有机化学, 2013, 33, 1195.)
doi: 10.6023/cjoc201304039 |
|
[14] |
Rateb, M. E.; Ebel, R.; Jaspars, M. Antonie Van Leeuwenhoek 2018, 111, 1467.
doi: 10.1007/s10482-018-1030-z |
[15] |
Sivalingam, P.; Hong, K.; Pote, J.; Prabakar, K. Int. J. Microbiol. 2019,5283948.
|
[16] |
Skropeta, D. Nat. Prod. Rep. 2008, 25, 1131.
doi: 10.1039/b808743a |
[17] |
Access on December 7, MarinLit Database, RSC. Available online: http://pubs.rsc.org/marinlit/.
|
[18] |
Schupp, P. J.; Kohlert-Schupp, C.; Whitefield, S.; Engemann, A.; Rohde, S.; Hemscheidt, T.; Pezzuto, J. M.; Kondratyuk, T. P.; Park, E.-J.; Marler, L.; Rostama, B.; Wright, A. D. Nat. Prod. Commun. 2009, 4, 1717.
pmid: 20120114 |
[19] |
Skropeta, D.; Wei, L. Nat. Prod. Rep. 2014, 31, 999.
doi: 10.1039/C3NP70118B |
[20] |
Weiss, C.; Figueras, E.; Borbely, A. N.; Sewald, N. J. Pept. Sci. 2017, 23, 514.
doi: 10.1002/psc.v23.7-8 |
[21] |
Carroll, A. R.; Copp, B. R.; Davis, R. A.; Keyzers, R. A.; Prinsep, M. R. Nat. Prod. Rep. 2020, 37, 175.
doi: 10.1039/C9NP00069K |
[22] |
Song, Y.; Yang, J.; Yu, J.; Li, J.; Yuan, J.; Wong, N.-K.; Ju, J. J. Antibiot. 2020, 73, 542.
doi: 10.1038/s41429-020-0307-4 |
[23] |
Hohmann, C.; Schneider, K.; Bruntner, C.; Irran, E.; Nicholson, G.; Bull, A. T.; Jones, A. L.; Brown, R.; Stach, J. E.; Goodfellow, M.; Beil, W.; Kramer, M.; Imhoff, J. F.; Sussmuth, R. D.; Fiedler, H. P. J. Antibiot. (Tokyo) 2009, 62, 99.
doi: 10.1038/ja.2008.24 |
[24] |
Nachtigall, J.; Schneider, K.; Bruntner, C.; Bull, A. T.; Goodfellow, M.; Zinecker, H.; Imhoff, J. F.; Nicholson, G.; Irran, E.; Sussmuth, R. D.; Fiedler, H. P. J. Antibiot. (Tokyo) 2011, 64, 453.
doi: 10.1038/ja.2011.26 |
[25] |
Ueki, M.; Ueno, K.; Miyadoh, S.; Abe, K.; Shibata, K.; Taniguchi, M.; Oi, S. J. Antibiot. (Tokyo) 1993, 46, 1089.
doi: 10.7164/antibiotics.46.1089 |
[26] |
Sao, S.; Kajiura, T.; Noguchi, M.; Takehana, K.; Kobayashi, T.; Tsuji, T. J. Antibiot. 2001, 54, 102.
doi: 10.7164/antibiotics.54.102 |
[27] |
Sommer, P. S.; Almeida, R. C.; Schneider, K.; Beil, W.; Sussmuth, R. D.; Fiedler, H. P. J. Antibiot. (Tokyo) 2008, 61, 683.
doi: 10.1038/ja.2008.97 |
[28] |
Losada, A. A.; Cano-Prieto, C.; Garcia-Salcedo, R.; Brana, A. F.; Mendez, C.; Salas, J. A.; Olano, C. Microb. Biotechnol. 2017, 10, 873.
doi: 10.1111/mbt2.2017.10.issue-4 |
[29] |
Hughes, C. C.; MacMillan, J. B.; Gaudencio, S. P.; Jensen, P. R.; Fenical, W. Angew. Chem. Int. Ed. 2009, 48, 725.
doi: 10.1002/anie.v48:4 |
[30] |
Wei, R. -B. X. , T.; Li, J.; Jiang, Z.-D.; Paul, R. J.; William, F. Bioorg. Med. Chem. Lett. 1999, 9, 2003.
pmid: 10450970 |
[31] |
Wei, R. B.; Xi, T.; Li, J.; Wang, P.; Li, F. C.; Lin, Y. C.; Qin, S. Mar. Drugs 2011, 9, 359.
doi: 10.3390/md9030359 |
[32] |
Chen, C.; Wang, J.; Guo, H.; Hou, W.; Yang, N.; Ren, B.; Liu, M.; Dai, H.; Liu, X.; Song, F.; Zhang, L. Appl. Microbiol. Biotechnol. 2013, 97, 3885.
doi: 10.1007/s00253-012-4681-0 |
[33] |
Vieweg, L.; Reichau, S.; Schobert, R.; Leadlay, P. F.; Sussmuth, R. D. Nat. Prod. Rep. 2014, 31, 1554.
doi: 10.1039/c4np00015c pmid: 24965099 |
[34] |
Pan, H. Q.; Zhang, S. Y.; Wang, N.; Li, Z. L.; Hua, H. M.; Hu, J. C.; Wang, S. J. Mar. Drugs 2013, 11, 3891.
doi: 10.3390/md11103891 |
[35] |
Song, C.-F. P, H.-Q.; Hu, J.-C. Chin. J. Antibiot. 2015, 40, 721. (in Chinese).
|
(宋春凤, 潘华奇, 胡江春, 中国抗生素杂志, 2015, 40, 721.)
|
|
[36] |
Brana, A. F.; Sarmiento-Vizcaino, A.; Osset, M.; Perez-Victoria, I.; Martin, J.; de Pedro, N.; de la Cruz, M.; Diaz, C.; Vicente, F.; Reyes, F.; Garcia, L. A.; Blanco, G. Mar. Drugs 2017, 15, 144.
doi: 10.3390/md15050144 |
[37] |
Luo, M.; Tang, L.; Dong, Y.; Huang, H.; Deng, Z.; Sun, Y. Nat. Prod. Res. 2020, 27, 1.
doi: 10.1080/14786419.2011.643549 |
[38] |
Prudhomme, M. Eur. J. Med. Chem. 2003, 38, 123.
pmid: 12620658 |
[39] |
Du, Y. L.; Ryan, K. S. Curr. Opin. Chem. Biol. 2016, 31, 74.
doi: 10.1016/j.cbpa.2016.01.017 |
[40] |
Bharate, S. B.; Sawant, S. D.; Singh, P. P.; Vishwakarma, R. A. Chem. Rev. 2013, 113, 6761.
doi: 10.1021/cr300410v |
[41] |
Dowlati, A.; Posey, J.; Ramanathan, R. K.; Rath, L.; Fu, P.; Chak, A.; Krishnamurthi, S.; Brell, J.; Ingalls, S.; Hoppel, C. L.; Ivy, P.; Remick, S. C. Cancer Chemother. Pharmacol. 2009, 65, 73.
doi: 10.1007/s00280-009-1005-x |
[42] |
Fischer, T.; Stone, R. M.; Deangelo, D. J.; Galinsky, I.; Estey, E.; Lanza, C.; Fox, E.; Ehninger, G.; Feldman, E. J.; Schiller, G. J.; Klimek, V. M.; Nimer, S. D.; Gilliland, D. G.; Dutreix, C.; Huntsman-Labed, A.; Virkus, J.; Giles, F. J. J. Clin. Oncol. 2010, 28, 4339.
doi: 10.1200/JCO.2010.28.9678 |
[43] |
Stone, R. M.; Mandrekar, S.; Sanford, B. L.; Geyer, S.; Bloomfield, C. D.; Dohner, K.; Thiede, C.; Marcucci, G.; Lo-Coco, F.; Klisovic, R. B.; Wei, A.; Sierra, J.; Sanz, M. A.; Brandwein, J. M.; de Witte, T.; Niederwieser, D.; Appelbaum, F. R.; Medeiros, B. C.; Tallman, M. S.; Krauter, J.; Schlenk, R. F.; Ganser, A.; Serve, H.; Ehninger, G.; Amadori, S.; Larson, R. A.; Dohner, H. Blood 2015,126.
|
[44] |
Zhang, W.; Liu, Z.; Li, S.; Yang, T.; Zhang, Q.; Ma, L.; Tian, X.; Zhang, H.; Huang, C.; Zhang, S.; Ju, J.; Shen, Y.; Zhang, C. Org. Lett. 2012, 14, 3364.
doi: 10.1021/ol301343n |
[45] |
Liu, Z.; Ma, L.; Zhang, L.; Zhang, W.; Zhu, Y.; Chen, Y.; Zhang, W.; Zhang, C. Org. Biomol. Chem. 2019, 17, 1053.
doi: 10.1039/C8OB02775G |
[46] |
Zhang, W.; Ma, L.; Li, S.; Liu, Z.; Chen, Y.; Zhang, H.; Zhang, G.; Zhang, Q.; Tian, X.; Yuan, C.; Zhang, S.; Zhang, W.; Zhang, C. J. Nat. Prod. 2014, 77, 1887.
doi: 10.1021/np500362p |
[47] |
Carro, L.; Golinska, P.; Nouioui, I.; Bull, A. T.; Igual, J. M.; Andrews, B. A.; Klenk, H.-P.; Goodfellow, M. Int. J. Syst. Evol. Microbiol. 2019, 69, 3426.
doi: 10.1099/ijsem.0.003634 |
[48] |
Busarakam, K.; Brown, R.; Bull, A. T.; Tan, G. Y.; Zucchi, T. D.; da Silva, L. J.; de Souza, W. R.; Goodfellow, M. Antonie Van Leeuwenhoek 2016, 109, 319.
doi: 10.1007/s10482-015-0635-8 |
[49] |
Zhang, W.; Li, S.; Zhu, Y.; Chen, Y.; Chen, Y.; Zhang, H.; Zhang, G.; Tian, X.; Pan, Y.; Zhang, S.; Zhang, W.; Zhang, C. J. Nat. Prod. 2014, 77, 388.
doi: 10.1021/np400665a |
[50] |
Huang, H.; Yang, T.; Ren, X.; Liu, J.; Song, Y.; Sun, A.; Ma, J.; Wang, B.; Zhang, Y.; Huang, C.; Zhang, C.; Ju, J. J. Nat. Prod. 2012, 75, 202.
doi: 10.1021/np2008335 |
[51] |
Zhu, X.; Duan, Y.; Cui, Z.; Wang, Z.; Li, Z.; Zhang, Y.; Ju, J.; Huang, H. J. Antibiot. (Tokyo) 2017, 70, 819.
doi: 10.1038/ja.2017.17 |
[52] |
Lai, Z.; Yu, J.; Ling, H.; Song, Y.; Yuan, J.; Ju, J.; Tao, Y.; Huang, H. Planta Med. 2018, 84, 201.
doi: 10.1055/s-0043-119888 |
[53] |
Yao, Y.; Sun, S.; Cao, M.; Mao, M.; He, J.; Gai, Q.; Qin, Y.; Yao, X.; Lu, H.; Chen, F.; Wang, W.; Luo, M.; Zhang, H.; Huang, H.; Ju, J.; Bian, X. W.; Wang, Y. ACS Chem. Neurosci. 2020, 11, 2256.
doi: 10.1021/acschemneuro.0c00206 |
[54] |
Pan, H.-Q.; Zhang, S.-Y.; Wang, N.; Li, Z.-L.; Hua, H.-M.; Hu, J.-C.; Wang, S.-J. Mar. Drugs 2013, 11, 3891.
doi: 10.3390/md11103891 |
[55] |
Um, S.; Kim, Y. J.; Kwon, H.; Wen, H.; Kim, S. H.; Kwon, H. C.; Park, S.; Shin, J.; Oh, D. C. J. Nat. Prod. 2013, 76, 873.
doi: 10.1021/np300902g |
[56] |
Yang, X. W.; Peng, K.; Liu, Z.; Zhang, G. Y.; Li, J.; Wang, N.; Steinmetz, A.; Liu, Y. J. Nat. Prod. 2013, 76, 2360.
doi: 10.1021/np400923c |
[57] |
Liu, N.; Shang, F.; Xi, L.; Huang, Y. Mar. Drugs 2013, 11, 1524.
doi: 10.3390/md11051524 |
[58] |
Liu, N.; Song, F.; Shang, F.; Huang, Y. Mar. Drugs 2015, 13, 6247.
doi: 10.3390/md13106247 |
[59] |
Pesic, A.; Baumann, H. I.; Kleinschmidt, K.; Ensle, P.; Wiese, J.; Sussmuth, R. D.; Imhoff, J. F. Mar. Drugs 2013, 11, 4834.
doi: 10.3390/md11124834 |
[60] |
You, Z. Y.; Wang, Y. H.; Zhang, Z. G.; Xu, M. J.; Xie, S. J.; Han, T. S.; Feng, L.; Li, X. G.; Xu, J. Mar. Drugs 2013, 11, 4035.
doi: 10.3390/md11104035 |
[61] |
Sun, C.; Yang, Z.; Zhang, C.; Liu, Z.; He, J.; Liu, Q.; Zhang, T.; Ju, J.; Ma, J. Org. Lett. 2019, 21, 1453.
doi: 10.1021/acs.orglett.9b00208 |
[62] |
Wang, C.; Xu, Y.-J.; Huang, X.-L.; Hao, J.-J.; Zhu, W.-M.; Chin. Marine Drugs 2016, 35, 1. (in Chinese).
|
(王衬, 徐亚娟, 黄小龙, 郝杰杰, 朱伟明, 中国海洋药物, 2016, 35, 1.)
|
|
[63] |
Wang, C.; Wang, L.; Fan, J.; Sun, K.; Zhu, W. Chin. J. Org. Chem. 2017, 37, 658. (in Chinese).
doi: 10.6023/cjoc201609021 |
(王聪, 王立平, 范杰, 孙坤来, 朱伟明, 有机化学, 2017, 37, 658.)
doi: 10.6023/cjoc201609021 |
|
[64] |
Song, Y.; Li, Q.; Liu, X.; Chen, Y.; Zhang, Y.; Sun, A.; Zhang, W.; Zhang, J.; Ju, J. J. Nat. Prod. 2014, 77, 1937.
doi: 10.1021/np500399v |
[65] |
Pan, H. Q.; Yu, S. Y.; Song, C. F.; Wang, N.; Hua, H. M.; Hu, J. C.; Wang, S. J. J. Microbiol. Biotechnol. 2015, 25, 353.
doi: 10.4014/jmb.1407.07025 |
[66] |
Zhou, X.; Huang, H. B.; Li, J.; Song, Y. X.; Jiang, R. W.; Liu, J.; Zhang, S.; Hua, Y.; Ju, J. H. Tetrahedron 2014, 70, 7795.
doi: 10.1016/j.tet.2014.02.007 |
[67] |
Liu, N.; Song, F.; Shang, F.; Huang, Y. Mar. Drugs 2015, 13, 6247.
doi: 10.3390/md13106247 |
[68] |
Ma, X. -Y. W. ,G.-W.; Zhang, Z.-Y.; Geng, T.-T.; Sun, X.-X.; Yang, D.-H.; Tang, X.-X.; Ma, M. J. Chin. Chem. Pharm. Soc. 2019, 28, 835. (in Chinese).
|
(马学洋, 王贵阳, 张中义, 耿彤彤, 孙晓旭, 杨东辉, 汤熙祥, 马明, 药物科学杂志, 2019, 28, 835.)
|
|
[69] |
Bao, J.; He, F.; Li, Y.; Fang, L.; Wang, K.; Song, J.; Zhou, J.; Li, Q.; Zhang, H. J. Antibiot. (Tokyo) 2018, 71, 1018.
doi: 10.1038/s41429-018-0096-1 |
[70] |
Schmitz, J.; Gilberg, E.; Loser, R.; Bajorath, J.; Bartz, U.; Gutschow, M. Bioorg. Med. Chem. 2019, 27, 1.
|
[71] |
Takehana, Y.; Umekita, M.; Hatano, M.; Kato, C.; Sawa, R.; Igarashi, M. J. Antibiot. (Tokyo) 2017, 70, 611.
doi: 10.1038/ja.2017.26 |
[72] |
Ortiz-Lopez, F. J.; Alcalde, E.; Sarmiento-Vizcaino, A.; Diaz, C.; Cautain, B.; Garcia, L. A.; Blanco, G.; Reyes, F. Mar. Drugs 2018, 16, 371.
doi: 10.3390/md16100371 |
[73] |
Jang, K. H.; Nam, S. J.; Locke, J. B.; Kauffman, C. A.; Beatty, D. S.; Paul, L. A.; Fenical, W. Angew. Chem. Int. Ed. 2013, 52, 7822.
doi: 10.1002/anie.v52.30 |
[74] |
Rodriguez, V.; Martin, J.; Sarmiento-Vizcaino, A.; de la Cruz, M.; Garcia, L. A.; Blanco, G.; Reyes, F. Mar. Drugs 2018, 16, 406.
doi: 10.3390/md16110406 |
[75] |
Shen, X.; Wang, X.; Huang, T.; Deng, Z.; Lin, S. Biomolecules 2020, 10, 684.
doi: 10.3390/biom10050684 |
[76] |
Niu, S.; Li, S.; Chen, Y.; Tian, X.; Zhang, H.; Zhang, G.; Zhang, W.; Yang, X.; Zhang, S.; Ju, J.; Zhang, C. J. Antibiot. (Tokyo) 2011, 64, 711.
doi: 10.1038/ja.2011.78 |
[77] |
Luo, M.; Tang, G.; Ju, J.; Lu, L.; Huang, H. Nat. Prod. Res. 2016, 30, 138.
doi: 10.1080/14786419.2015.1045509 |
[78] |
Wang, T.; Jiang, Y.; Ma, K. X.; Li, Y. Q.; Huang, R.; Xie, X. S.; Wu, S. H. Chem. Biodiversity 2014, 11, 929.
doi: 10.1002/cbdv.201300321 |
[79] |
Rateb, M. E.; Houssen, W. E.; Harrison, W. T.; Deng, H.; Okoro, C. K.; Asenjo, J. A.; Andrews, B. A.; Bull, A. T.; Goodfellow, M.; Ebel, R.; Jaspars, M. J. Nat. Prod. 2011, 74, 1965.
doi: 10.1021/np200470u |
[80] |
Cha, J. W.; Lee, S. I.; Kim, M. C.; Thida, M.; Lee, J. W.; Park, J. S.; Kwon, H. C. Bioorg. Med. Chem. Lett. 2015, 25, 5083.
doi: 10.1016/j.bmcl.2015.10.019 |
[81] |
Chen, Y.; Neilson, J. W.; Kushwaha, P.; Maier, R. M.; Barberán, A. ISME J. 2020.
|
[82] |
Wyman, S. K.; Avila-Herrera, A.; Nayfach, S.; Pollard, K. S. PLoS One 2018, 13, e0205749.
doi: 10.1371/journal.pone.0205749 |
[83] |
Galand, P. E.; Pereira, O.; Hochart, C.; Auguet, J. C.; Debroas, D. ISME J. 2018, 12, 2470.
doi: 10.1038/s41396-018-0158-1 |
[84] |
Velez, P.; Espinosa-Asuar, L.; Figueroa, M.; Gasca-Pineda, J.; Aguirre-von-Wobeser, E.; Eguiarte, L. E.; Hernandez-Monroy, A.; Souza, V. Front. Microbiol. 2018, 9, 1755.
doi: 10.3389/fmicb.2018.01755 |
[85] |
Ziemert, N.; Alanjary, M.; Weber, T. Nat. Prod. Rep. 2016, 33, 988.
doi: 10.1039/c6np00025h pmid: 27272205 |
[86] |
Gomez-Escribano, J. P.; Castro, J. F.; Razmilic, V.; Chandra, G.; Andrews, B.; Asenjo, J. A.; Bibb, M. J. BMC Genomics 2015,16.
|
[87] |
Wakefield, J.; Hassan, H. M.; Jaspars, M.; Ebel, R.; Rateb, M. E. Front. Microbiol. 2017,8.
|
[88] |
Baltz, R. H. J. Ind. Microbiol. Biotechnol. 2017, 44, 573.
doi: 10.1007/s10295-016-1815-x |
[89] |
Schulz, D.; Beese, P.; Ohlendorf, B.; Erhard, A.; Zinecker, H.; Dorador, C.; Imhoff, J. F. J. Antibiot. (Tokyo) 2011, 64, 763.
doi: 10.1038/ja.2011.87 |
[90] |
Rateb, M. E.; Houssen, W. E.; Arnold, M.; Abdelrahman, M. H.; Deng, H.; Harrison, W. T.; Okoro, C. K.; Asenjo, J. A.; Andrews, B. A.; Ferguson, G.; Bull, A. T.; Goodfellow, M.; Ebel, R.; Jaspars, M. J. Nat. Prod. 2011, 74, 1491.
doi: 10.1021/np200320u |
[91] |
Nachtigall, J.; Kulik, A.; Helaly, S.; Bull, A. T.; Goodfellow, M.; Asenjo, J. A.; Maier, A.; Wiese, J.; Imhoff, J. F.; Sussmuth, R. D.; Fiedler, H. P. J. Antibiot. (Tokyo) 2011, 64, 775.
doi: 10.1038/ja.2011.96 |
[92] |
Santhanam, R.; Okoro, C. K.; Rong, X.; Huang, Y.; Bull, A. T.; Weon, H. Y.; Andrews, B. A.; Asenjo, J. A.; Goodfellow, M. Int. J. Syst. Evol. Microbiol. 2012, 62, 2680.
doi: 10.1099/ijs.0.038463-0 |
[93] |
Kurapova, A. I.; Zenova, G. M.; Sudnitsyn, I. I.; Kizilova, A. K.; Manucharova, N. A.; Norovsuren, Z.; Zvyagintsev, D. G. Microbiology 2012, 81, 98.
doi: 10.1134/S0026261712010092 |
[94] |
Meklat, A.; Sabaou, N.; Zitouni, A.; Mathieu, F.; Lebrihi, A. Appl. Environ. Microbiol. 2011, 77, 6710.
doi: 10.1128/AEM.00326-11 |
[95] |
Ibeyaima, A.; Singh, A. K.; Lal, R.; Gupta, S.; Goodfellow, M.; Sarethy, I. P. Antonie Van Leeuwenhoek 2018, 111, 2141.
doi: 10.1007/s10482-018-1106-9 pmid: 29804223 |
[96] |
Abdelkader, M. S. A.; Philippon, T.; Asenjo, J. A.; Bull, A. T.; Goodfellow, M.; Ebel, R.; Jaspars, M.; Rateb, M. E. J. Antibiot. (Tokyo) 2018, 71, 425.
doi: 10.1038/s41429-017-0012-0 |
[97] |
Bull, A. T.; Asenjo, J. A. Antonie Van Leeuwenhoek 2013, 103, 1173.
doi: 10.1007/s10482-013-9911-7 |
[98] |
Cortes-Abayay, C.; Dorador, C.; Schumann, P.; Andrews, B.; Asenjo, J.; Nouioui, I. Int. J. Syst. Evol. Microbiol. 2019, 69, 2315.
doi: 10.1099/ijsem.0.003468 |
[99] |
Okoro, C. K.; Brown, R.; Jones, A. L.; Andrews, B. A.; Asenjo, J. A.; Goodfellow, M.; Bull, A. T. Antonie Van Leeuwenhoek 2009, 95, 121.
doi: 10.1007/s10482-008-9295-2 |
[100] |
Elsayed, S. S.; Trusch, F.; Deng, H.; Raab, A.; Prokes, I.; Busarakam, K.; Asenjo, J. A.; Andrews, B. A.; van West, P.; Bull, A. T.; Goodfellow, M.; Yi, Y.; Ebel, R.; Jaspars, M.; Rateb, M. E. J. Org. Chem. 2015, 80, 10252.
doi: 10.1021/acs.joc.5b01878 |
[101] |
Gomez-Escribano, J. P.; Castro, J. F.; Razmilic, V.; Jarmusch, S. A.; Saalbach, G.; Ebel, R.; Jaspars, M.; Andrews, B.; Asenjo, J. A.; Bibb, M. J. Appl. Environ. Microbiol. 2019,85.
|
[102] |
Cortes-Albayay, C.; Jarmusch, S. A.; Trusch, F.; Ebel, R.; Andrews, B. A.; Jaspars, M.; Asenjo, J. A. J. Org. Chem. 2020, 85, 1661.
doi: 10.1021/acs.joc.9b02231 |
[103] |
Yekkour, A.; Meklat, A.; Bijani, C.; Toumatia, O.; Errakhi, R.; Lebrihi, A.; Mathieu, F.; Zitouni, A.; Sabaou, N. Lett. Appl. Microbiol. 2015, 60, 589.
doi: 10.1111/lam.12412 |
[104] |
Nithya, K.; Muthukumar, C.; Biswas, B.; Alharbi, N. S.; Kadaikunnan, S.; Khaled, J. M.; Dhanasekaran, D. Microbiol. Res. 2018, 207, 116.
doi: 10.1016/j.micres.2017.11.012 |
[105] |
Srinivas, T. N.; Anil Kumar, P.; Tank, M.; Sunil, B.; Poorna, M.; Zareena, B.; Shivaji, S. Int. J. Syst. Evol. Microbiol. 2015, 65, 2391.
doi: 10.1099/ijs.0.000269 |
[106] |
Zhang, S.; Gui, C.; Shao, M.; Kumar, P. S.; Huang, H.; Ju, J. Nat. Prod. Res. 2018, 34, 1499.
doi: 10.1080/14786419.2018.1493736 |
[107] |
Meena, B.; Anburajan, L.; Vinithkumar, N. V.; Kirubagaran, R.; Dharani, G. Microb. Pathog. 2019, 132, 129.
doi: 10.1016/j.micpath.2019.04.043 |
[108] |
Sottorff, I.; Wiese, J.; Imhoff, J. F. Int. Microbiol. 2019, 22, 377.
doi: 10.1007/s10123-019-00061-9 |
[109] |
Kelly, L. C.; Cockell, C. S.; Thorsteinsson, T.; Marteinsson, V.; Stevenson, J. Microb. Ecol. 2014, 68, 504.
doi: 10.1007/s00248-014-0432-3 |
[110] |
Santhanam, R.; Rong, X.; Huang, Y.; Andrews, B. A.; Asenjo, J. A.; Goodfellow, M. Antonie Van Leeuwenhoek 2013, 103, 367.
doi: 10.1007/s10482-012-9816-x pmid: 23011007 |
[111] |
Kay, S.; Pathom-aree, W.; Cheeptham, N. Chiang. Mai J. Sci. 2013, 40, 26.
|
[112] |
Um, S.; Choi, T. J.; Kim, H.; Kim, B. Y.; Kim, S. H.; Lee, S. K.; Oh, K. B.; Shin, J.; Oh, D. C. J. Org. Chem. 2013, 78, 12321.
doi: 10.1021/jo401974g |
[113] |
Hur, J.; Jang, J.; Sim, J.; Son, W. S.; Ahn, H. C.; Kim, T. S.; Shin, Y. H.; Lim, C.; Lee, S.; An, H.; Kim, S. H.; Oh, D. C.; Jo, E. K.; Jang, J.; Lee, J.; Suh, Y. G. Angew. Chem. Int. Ed. 2018, 57, 3069.
doi: 10.1002/anie.201711286 |
[114] |
Kim, T. S.; Shin, Y. H.; Lee, H. M.; Kim, J. K.; Choe, J. H.; Jang, J. C.; Um, S.; Jin, H. S.; Komatsu, M.; Cha, G. H.; Chae, H. J.; Oh, D. C.; Jo, E. K. Sci. Rep. 2017, 7, 3431.
doi: 10.1038/s41598-017-03477-3 |
[115] |
Wakefield, J.; Hassan, H. M.; Jaspars, M.; Ebel, R.; Rateb, M. E. Front Microbiol 2017, 8, 1284.
doi: 10.3389/fmicb.2017.01284 pmid: 28744271 |
[116] |
Bae, M.; An, J. S.; Bae, E. S.; Oh, J.; Park, S. H.; Lim, Y.; Ban, Y. H.; Kwon, Y.; Cho, J. C.; Yoon, Y. J.; Lee, S. K.; Shin, J.; Oh, D. C. Org. Lett. 2019, 21, 3635.
doi: 10.1021/acs.orglett.9b01057 |
[117] |
Bae, M.; An, J. S.; Hong, S.-H.; Bae, E. S.; Chung, B.; Kwon, Y.; Hong, S.; Oh, K.-B.; Shin, J.; Lee, S. K.; Oh, D.-C. Mar. Drugs 2020,18.
|
[118] |
Son, S.; Jang, M.; Lee, B.; Hong, Y. S.; Ko, S. K.; Jang, J. H.; Ahn, J. S. J. Nat. Prod. 2018, 81, 2205.
doi: 10.1021/acs.jnatprod.8b00449 |
[119] |
Zeng, Y.-X.; Chen, B.; Zou, Y.; Zheng, T.-L. J. Microbiol. 2008, 48, 695. (in Chinese).
doi: 10.1007/s12275-010-0320-6 |
(曾胤新, 陈波, 邹扬, 郑天凌, 微生物学报, 2008, 48, 695.)
|
|
[120] |
Tripathi, V. C.; Satish, S.; Horam, S.; Raj, S.; lal, A.; Arockiaraj, J.; Pasupuleti, M.; Dikshit, D. K. Polar Sci. 2018, 18, 147.
doi: 10.1016/j.polar.2018.04.006 |
[121] |
Tian, Y.; Li, Y. L.; Zhao, F. C. Mar. Drugs 2017,15.
|
[122] |
Silva, L. J.; Crevelin, E. J.; Souza, D. T.; Lacerda-Junior, G. V.; de Oliveira, V. M.; Ruiz, A.; Rosa, L. H.; Moraes, L. A. B.; Melo, I. S. Sci. Rep. 2020, 10, 13870.
doi: 10.1038/s41598-020-69786-2 |
[123] |
Yang, A.-G.; Si, L.-L.; Shi, Z.-P.; Tian, L.; Liu, D.; Zhou, D.-M. Proksch, P.; Lin, W.-H. Org. Lett. 2013, 15, 5366.
doi: 10.1021/ol4026809 |
[124] |
Su, S. S.; Tian, L.; Chen, G.; Li, Z. Q.; Xu, W. F.; Pei, Y. H. J. Asian Nat. Prod. Res. 2013, 15, 265.
doi: 10.1080/10286020.2012.762764 |
[125] |
Philkhana, S. C.; Jachak, G. R.; Gunjal, V. B.; Dhage, N. M.; Bansode, A. H.; Reddy, D. S. Tetrahedron Lett. 2015, 56, 1252.
doi: 10.1016/j.tetlet.2015.01.143 |
[126] |
Moon, K.; Ahn, C. H.; Shin, Y.; Won, T. H.; Ko, K.; Lee, S. K.; Oh, K. B.; Shin, J.; Nam, S. I.; Oh, D. C. Mar. Drugs 2014, 12, 2526.
doi: 10.3390/md12052526 |
[127] |
Mei, D.-H. Master's Thesis, Shanghai Ocean University, Shanghai, 2015. (in Chinese).
|
(梅东海, 硕士论文,上海海洋大学, 上海, 2015.)
|
|
[128] |
Jiang, S.-P. Master's Thesis, Shanghai Ocean University, Shanghai 2015. (in Chinese).
|
(江昇平, 硕士论文,上海海洋大学, 上海, 2015.)
|
|
[129] |
Kim, D.; Lee, E. J.; Lee, J.; Leutou, A. S.; Shin, Y. H.; Choi, B.; Hwang, J. S.; Hahn, D.; Choi, H. Chin, J.; Cho, S. J.; Hong, Y. D.; Ko, J.; Seong, C. N.; Maloney, K. N.; Oh, D. C.; Yang, I.; Hwang, H.; Nam, S. J. Mar. Drugs 2018, 16, 130.
|
[130] |
Shen, J.; Fan, Y.; Zhu, G.; Chen, H.; Zhu, W.; Fu, P. Org. Lett. 2019, 21, 4816.
doi: 10.1021/acs.orglett.9b01710 |
[131] |
Shen, J. J.; Wang, J.; Chen, H.; Wang, Y.; Zhu, W. M.; Fu, P. Org. Chem. Front. 2020, 7, 310.
doi: 10.1039/C9QO01215J |
[132] |
Liu, D.; Yang, A.; Wu, C.; Guo, P.; Proksch, P.; Lin, W. Bioorg. Med. Chem. Lett. 2014, 24, 5288.
doi: 10.1016/j.bmcl.2014.09.049 |
[133] |
Kim, D.; Lee, E. J.; Lee, J.; Leutou, A. S.; Shin, Y. H.; Choi, B.; Hwang, J. S.; Hahn, D.; Choi, H.; Chin, J.; Cho, S. J.; Hong, Y. D.; Ko, J.; Seong, C. N.; Maloney, K. N.; Oh, D. C.; Yang, I.; Hwang, H.; Nam, S. J. Mar. Drugs 2018,16.
|
[134] |
Tan, B.; Chen, S.; Zhang, Q.; Chen, Y.; Zhu, Y.; Khan, I.; Zhang, W.; Zhang, C. Org. Lett. 2020, 22, 1062.
doi: 10.1021/acs.orglett.9b04597 |
[135] |
Liu, W.; Jannu, V. G.; Liu, Z.; Zhang, Q.; Jiang, X.; Ma, L.; Zhang, W.; Zhang, C.; Zhu, Y. Org. Biomol. Chem. 2020, 18, 3649.
doi: 10.1039/D0OB00617C |
[136] |
He, J.; Wei, X.; Yang, Z.; Li, Y.; Ju, J.; Ma, J. Mar. Drugs 2020, 18, 216.
doi: 10.3390/md18040216 |
[1] | Xiurong Wu, Chaojiang Xiao, Yi Shen, Hongxia Tang, Junyi Zhu, Bei Jiang. Research Progress on Antimalarial Natural Sesquiterpenoids from Plants from 1972 to 2022 [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2764-2789. |
[2] | Mingjia Guang, Shuo Jiang, Baoyu Zhu, Rusong Zhang, Kunpeng Wang, Minghui Wang, Liangzhong Xu. Design, Synthesis and Insecticidal, Acaricidal Activities of Novel Pyrrole-2-carboxylic Acid and Their Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2895-2904. |
[3] | Qifan Wang, Yuanquan Zhang, Li Xing, Yuanxiang Zhou, Chenyu Gong, Bangcan He, Nian Zhang, Yongjun Wu, Wei Xue. Design, Synthesis and Biological Activity of Myricetin Derivatives Containing 1,2,4-Triazolo[3,4-b]-1,3,4-thiadiazole [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1525-1536. |
[4] | Mingqiong Li, Huibin Huang, Yuchan Chen, Saini Li, Zhaoming Liu, Yanlin Wang, Weimin Zhang, Xiaoxia Gao. Polyketides from the Deep-Sea-Derived Fungus Talaromyces indigoticus FS688 and Their Cytotoxicites [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2975-2980. |
[5] | Ran Gao, Weisheng Tian. Synthesis of Azedarachol and 2α,3α,20R-Trihydroxypregnane-16β-methacrylate [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2521-2526. |
[6] | Fasheng Shi, Shengwen Wang, Huan Xu, Xingxing Lu, Xinling Yang, Tengda Sun, Changkai Wang, Xiaoming Zhang, Qing Yang, Yun Ling. Design, Synthesis and Fungicidal Actiνity of Noνel Thiosemicarbazide Compounds [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2106-2116. |
[7] | Yaqian Yan, Haoxin Wang, Yaoyao Li. Discovery of a New Polycyclic Tetramate Macrolactam 3-Hydroxycombamide I [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1557-1561. |
[8] | Can Yong, Yun Li, Tao Bi, Guofeng Chen, Dongxia Zheng, Zhouyu Wang, Yuanyuan Zhang. Research Progress on the Synthesis and Activity of D-Galactose Derived Small Galectin Inhibitors [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1307-1325. |
[9] | Jie Luo, Yaqian Yan, Haoxin Wang, Yaoyao Li. Discovery of a New Polycyclic Tetramate Macrolactam Clifednamide K [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1224-1228. |
[10] | Mengmeng Xu, Quan Cai. Progress of Catalytic Asymmetric Diels-Alder Reactions of 2-Pyrones [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 698-713. |
[11] | Yajun Mao, Xiangmin Shao, Yangjie Li, Ruimei Cao, Yali Feng, Guangyu Zhai. Research Progress on the Synthesis of Quercetin Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3588-3605. |
[12] | Hongliang Xu, Jing Su, Zishi Wang, Chenxin Hou, Pengchong Wu, Yue Xing, Xiangshuai Li, Xiaolei Zhu, Yuncai Lu, Lijian Xu. Synthesis, Design and Three-Dimensional Quantitative Structure Activity Relationship (3D-QSAR) Research of Phenylpyrrole Fungicides [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3560-3570. |
[13] | Haixia Shi, Yaoyao Li, Jing Zhu, Haoxin Wang, Yuemao Shen. Discovery of Germicidin Glucuronides from Streptomyces sp. LZ35 [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2502-2506. |
[14] | Xiaotian Qin, Junchao Zhang, Yuqing He, Rui Zhang, Hua Cheng, Cheng Chen, Xin Qin. Synthesis and Biological Activities of Coenzyme Q Derivatives Containing (4-Aryloxylaryl)amino Moiety [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 2045-2054. |
[15] | Meng Xu, Shenyuan Gao, Yuanxu Zeng, Anhui Gao, Lixin Gao, Lei Xu, Yubo Zhou, Jianrong Gao, Qing Ye, Jia Li. Synthesis and Evaluation of 3-(Indol-3-yl)-4-(pyrazolo[3,4- c]pyridazin-3-yl)maleimides as Potent Mutant Isocitrate Dehydrogenase-1 Inhibitors [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1991-2000. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||