Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (5): 2045-2054.DOI: 10.6023/cjoc202011026 Previous Articles Next Articles
ARTICLES
秦啸天a, 张俊朝a, 何钰晴a, 张锐a, 程华a,*(), 陈宬b,*(), 秦鑫c,*()
收稿日期:
2020-11-20
修回日期:
2020-12-21
发布日期:
2021-02-22
通讯作者:
程华, 陈宬, 秦鑫
基金资助:
Xiaotian Qina, Junchao Zhanga, Yuqing Hea, Rui Zhanga, Hua Chenga,*(), Cheng Chenb,*(), Xin Qinc,*()
Received:
2020-11-20
Revised:
2020-12-21
Published:
2021-02-22
Contact:
Hua Cheng, Cheng Chen, Xin Qin
About author:
Supported by:
Share
Xiaotian Qin, Junchao Zhang, Yuqing He, Rui Zhang, Hua Cheng, Cheng Chen, Xin Qin. Synthesis and Biological Activities of Coenzyme Q Derivatives Containing (4-Aryloxylaryl)amino Moiety[J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 2045-2054.
Entry | [Pd] (mol%) | Ligand (mol%) | Base (mmol) | Solvent (mL) | Yielda/% |
---|---|---|---|---|---|
1 | Pd(OAc)2 (5) | XPhos (10) | Cs2CO3 (0.15) | Toluene (3.3) | 33 |
2 | Pd(OAc)2 (5) | XPhos (10) | Cs2CO3 (0.15) | Toluene (5.0) | 48 |
3 | Pd(OAc)2 (5) | XPhos (10) | Cs2CO3 (0.15) | Toluene (6.6) | 38 |
4 | Pd(OAc)2 (10) | XPhos (10) | Cs2CO3 (0.15) | Toluene (5.0) | 62 |
5 | Pd(OAc)2 (10) | XPhos (15) | Cs2CO3 (0.15) | Toluene (5.0) | 63 |
6 | Pd(OAc)2 (10) | Brettphos (10) | Cs2CO3 (0.15) | Toluene (5.0) | Trace |
7 | Pd(OAc)2 (10) | Xantphos (10) | Cs2CO3 (0.15) | Toluene (5.0) | 68 |
8 | Pd(OAc)2 (10) | tBuBrettphos (10) | Cs2CO3 (0.15) | Toluene (5.0) | Trace |
9 | Pd(OAc)2 (10) | RuPhos (10) | Cs2CO3 (0.15) | Toluene (5.0) | 70 |
10 | PdCl2 (10) | RuPhos (10) | Cs2CO3 (0.15) | Toluene (5.0) | 45 |
11 | Pd2(dba)3 (10) | RuPhos (10) | Cs2CO3 (0.15) | Toluene (5.0) | 60 |
12 | Pd(OAc)2 (10) | RuPhos (10) | K2 CO3 (0.15) | Toluene (5.0) | 82 |
13 | Pd(OAc)2 (10) | RuPhos (10) | KOtBu (0.15) | Toluene (5.0) | 20 |
14 | Pd(OAc)2 (10) | RuPhos (10) | NaH (0.15) | Toluene (5.0) | 25 |
15 | Pd(OAc)2 (10) | RuPhos (10) | K2CO3 (0.10) | Toluene (5.0) | 72 |
16 | Pd(OAc)2 (10) | RuPhos (10) | K2CO3 (0.20) | Toluene (5.0) | 79 |
17 | Pd(OAc)2 (10) | RuPhos (10) | K2CO3 (0.25) | Toluene (5.0) | 77 |
18 | Pd(OAc)2 (10) | — | K2CO3 (0.15) | Toluene (5.0) | Trace |
19 | — | RuPhos (10) | K2CO3 (0.15) | Toluene (5.0) | Trace |
Entry | [Pd] (mol%) | Ligand (mol%) | Base (mmol) | Solvent (mL) | Yielda/% |
---|---|---|---|---|---|
1 | Pd(OAc)2 (5) | XPhos (10) | Cs2CO3 (0.15) | Toluene (3.3) | 33 |
2 | Pd(OAc)2 (5) | XPhos (10) | Cs2CO3 (0.15) | Toluene (5.0) | 48 |
3 | Pd(OAc)2 (5) | XPhos (10) | Cs2CO3 (0.15) | Toluene (6.6) | 38 |
4 | Pd(OAc)2 (10) | XPhos (10) | Cs2CO3 (0.15) | Toluene (5.0) | 62 |
5 | Pd(OAc)2 (10) | XPhos (15) | Cs2CO3 (0.15) | Toluene (5.0) | 63 |
6 | Pd(OAc)2 (10) | Brettphos (10) | Cs2CO3 (0.15) | Toluene (5.0) | Trace |
7 | Pd(OAc)2 (10) | Xantphos (10) | Cs2CO3 (0.15) | Toluene (5.0) | 68 |
8 | Pd(OAc)2 (10) | tBuBrettphos (10) | Cs2CO3 (0.15) | Toluene (5.0) | Trace |
9 | Pd(OAc)2 (10) | RuPhos (10) | Cs2CO3 (0.15) | Toluene (5.0) | 70 |
10 | PdCl2 (10) | RuPhos (10) | Cs2CO3 (0.15) | Toluene (5.0) | 45 |
11 | Pd2(dba)3 (10) | RuPhos (10) | Cs2CO3 (0.15) | Toluene (5.0) | 60 |
12 | Pd(OAc)2 (10) | RuPhos (10) | K2 CO3 (0.15) | Toluene (5.0) | 82 |
13 | Pd(OAc)2 (10) | RuPhos (10) | KOtBu (0.15) | Toluene (5.0) | 20 |
14 | Pd(OAc)2 (10) | RuPhos (10) | NaH (0.15) | Toluene (5.0) | 25 |
15 | Pd(OAc)2 (10) | RuPhos (10) | K2CO3 (0.10) | Toluene (5.0) | 72 |
16 | Pd(OAc)2 (10) | RuPhos (10) | K2CO3 (0.20) | Toluene (5.0) | 79 |
17 | Pd(OAc)2 (10) | RuPhos (10) | K2CO3 (0.25) | Toluene (5.0) | 77 |
18 | Pd(OAc)2 (10) | — | K2CO3 (0.15) | Toluene (5.0) | Trace |
19 | — | RuPhos (10) | K2CO3 (0.15) | Toluene (5.0) | Trace |
Entry | Compd. | R1 | R2 | Yielda/% | Ib/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 4a | H | H | 80 | 13.95 | |||||
2 | 4b | 4-CN | H | 56 | 19.99 | |||||
3 | 4c | 4-OCF3 | H | 60 | 9.20 | |||||
4 | 4d | 2-CN | H | 72 | 42.94 | |||||
5 | 4e | 2,4-Cl2 | H | 75 | 9.59 | |||||
6 | 4f | 2-Cl-4-CF3 | H | 67 | 14.25 | |||||
7 | 4g | 2-Naphthylc | H | 81 | 9.33 | |||||
8 | 4h | 2,4-Cl2 | 2-F | 58 | 14.74 | |||||
9 | 4i | 2-Cl-4-CH3 | 2-F | 63 | 2.15 | |||||
10 | 4j | 2,4,6-Cl3 | 2-F | 57 | 7.65 | |||||
11 | 4k | 2-Naphthylc | 2-F | 73 | 12.90 | |||||
12 | 4l | 2,4-Cl2 | 2-Cl | 60 | 8.91 | |||||
13 | 4m | 2-Cl-4-CF3 | 2-Cl | 65 | 39.83 | |||||
14 | 4n | 2-Cl-4-CH3 | 2-Cl | 57 | 10.95 | |||||
15 | 4o | 2,4,6-Cl3 | 2-Cl | 72 | 3.48 | |||||
16 | 4p | 2-Naphthylc | 2-Cl | 75 | 5.21 | |||||
17 | 4q | 2,4-Cl2 | 2,6-F2 | 62 | 3.60 | |||||
18 | 4r | 2,4,6-Cl3 | 2,6-F2 | 65 | 1.18 | |||||
19 | 4s | 2-Naphthylc | 2,6-F2 | 62 | 11.47 | |||||
20 | 4t | 2,4-Cl2 | 2,6-Cl2 | 91 | 6.62 | |||||
21 | 4u | 2-Cl-4-CF3 | 2,6-Cl2 | 67 | 9.37 | |||||
22 | 4v | 2,4,6-Cl3 | 2,6-Cl2 | 53 | 9.47 | |||||
23 | 4w | 2-Naphthyl | 2,6-Cl2 | 60 | 8.26 | |||||
24 | Azoxystrobind | 92.56 |
Entry | Compd. | R1 | R2 | Yielda/% | Ib/% | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 4a | H | H | 80 | 13.95 | |||||
2 | 4b | 4-CN | H | 56 | 19.99 | |||||
3 | 4c | 4-OCF3 | H | 60 | 9.20 | |||||
4 | 4d | 2-CN | H | 72 | 42.94 | |||||
5 | 4e | 2,4-Cl2 | H | 75 | 9.59 | |||||
6 | 4f | 2-Cl-4-CF3 | H | 67 | 14.25 | |||||
7 | 4g | 2-Naphthylc | H | 81 | 9.33 | |||||
8 | 4h | 2,4-Cl2 | 2-F | 58 | 14.74 | |||||
9 | 4i | 2-Cl-4-CH3 | 2-F | 63 | 2.15 | |||||
10 | 4j | 2,4,6-Cl3 | 2-F | 57 | 7.65 | |||||
11 | 4k | 2-Naphthylc | 2-F | 73 | 12.90 | |||||
12 | 4l | 2,4-Cl2 | 2-Cl | 60 | 8.91 | |||||
13 | 4m | 2-Cl-4-CF3 | 2-Cl | 65 | 39.83 | |||||
14 | 4n | 2-Cl-4-CH3 | 2-Cl | 57 | 10.95 | |||||
15 | 4o | 2,4,6-Cl3 | 2-Cl | 72 | 3.48 | |||||
16 | 4p | 2-Naphthylc | 2-Cl | 75 | 5.21 | |||||
17 | 4q | 2,4-Cl2 | 2,6-F2 | 62 | 3.60 | |||||
18 | 4r | 2,4,6-Cl3 | 2,6-F2 | 65 | 1.18 | |||||
19 | 4s | 2-Naphthylc | 2,6-F2 | 62 | 11.47 | |||||
20 | 4t | 2,4-Cl2 | 2,6-Cl2 | 91 | 6.62 | |||||
21 | 4u | 2-Cl-4-CF3 | 2,6-Cl2 | 67 | 9.37 | |||||
22 | 4v | 2,4,6-Cl3 | 2,6-Cl2 | 53 | 9.47 | |||||
23 | 4w | 2-Naphthyl | 2,6-Cl2 | 60 | 8.26 | |||||
24 | Azoxystrobind | 92.56 |
[1] |
Lipshutz, B. H.; Bulow, G.; Fernandez-Lazaro, F.; Kim, S. K.; Lowe, R.; Mollard, P.; Stevens, K. L. J. Am. Chem. Soc. 1999, 121, 11664.
doi: 10.1021/ja992164p |
[2] |
Olgun, A.; Akman, S.; Tezcan, S.; Kutluay, T. Med. Hypotheses 2003, 60, 325.
doi: 10.1016/S0306-9877(02)00392-4 |
[3] |
Li, Q.; Gu, K.; Cheng, X. H. Chin. J. Org. Chem. 2005, 25, 1494. (in Chinese).
|
(李全, 古昆, 程晓红, 有机化学, 2005, 25, 1494.)
|
|
[4] |
Festenstein, G. N.; Heaton, F. W.; Lowe, J. S.; Morton, R.A., Biochem. J. 1955, 59, 558.
doi: 10.1042/bj0590558 |
[5] |
Mitchell, P. FEBS Lett. 1975, 56, 1.
pmid: 239860 |
[6] |
Frei, B.; Kim, M. C.; Ames, B. Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 4879.
pmid: 2352956 |
[7] |
Brancato, R.; Fiore, T.; Papucci, L.; Schiavone, N.; Formigli, L.; Orlandini, S. Z.; Gobbi, P. G.; Carones, F.; Donnini, M.; Lapucci, A.; Capaccioli, S. J. Refract. Surg. 2002, 18, 135.
pmid: 11934201 |
[8] |
Schmelzer, C.; Lindner, I.; Vock, C.; Fujji, K.; Döring, F. IUBMB Life 2007, 59, 628.
doi: 10.1080/15216540701545991 |
[9] |
Chen, S.; Zhang, Y. H.; Han, Y. H.; Mc Clements, D. J.; Liao, W. Y.; Mao, L. K.; Yuan, F.; Gao, Y. X. Food Hydrocolloids 2020, 109, 106090.
doi: 10.1016/j.foodhyd.2020.106090 |
[10] |
Bentinger, M.; Brismar, K.; Dallner, G. Mitochondrion 2007, 7S, S41.
|
[11] |
Tiano, L.; Belardinelli, R.; Carnevali, P.; Principi, F.; Seddaiu, G.; Littarru, G. P. Eur. Heart J. 2007, 28, 2249.
pmid: 17644511 |
[12] |
Moreira, P. I.; Zhu, X. W.; Wang, X. L.; Lee, H. Y.; Nunomura, A.; Petersen, R. B.; Perry, G.; Smith, M. A. Biochim. Biophys. Acta 2010, 1802, 212.
doi: 10.1016/j.bbadis.2009.10.007 pmid: 19853657 |
[13] |
Sourris, K. C.; Harcourt, B. E.; Tang, P. H.; Morley, A. L.; Huynh, K.; Penfold, S. A.; Coughlan, M. T.; Cooper, M. E.; Nguyen, T. V.; Ritchie, R. H.; Forbes, J. M. Free Radical Biol. Med. 2012, 52, 716.
doi: 10.1016/j.freeradbiomed.2011.11.017 |
[14] |
Conklin, K. A.; Nicolson, G. L. Curr. Cancer Ther. Rev. 2008, 4, 66.
doi: 10.2174/157339408783565484 |
[15] |
Comhair, S. A.; Grandon, D.; Khan, A.; Zhang, R.; Hazen, S. L.; Erzurum, S. C. Am. J. Respir. Crit. Care Med. 2015, 191, 1336.
doi: 10.1164/rccm.201412-2259LE |
[16] |
Xiong, M. Q.; Chen, T.; Wang, Y. X.; Zhu, X. L.; Yang, G. F. Bioorg. Med. Chem. Lett. 2020, 30, 127324.
doi: 10.1016/j.bmcl.2020.127324 |
[17] |
Chen, T.; Xiong, H.; Yang, J. F.; Zhu, X. L.; Qu, R. Y.; Yang, G. F. J. Agric. Food Chem. 2020, 68, 9839.
doi: 10.1021/acs.jafc.0c03369 |
[18] |
Pitsinos, E. N.; Vidali, V. P.; Couladouros, E. A. Eur. J. Org. Chem. 2011,1207.
|
[19] |
Dua, R.; Shrivastava, S.; Sonwane, S. K.; Srivastava, S. K.; Gour, H. S. Adv. Biol. Res. 2011, 5, 120.
|
[20] |
Bedos-Belval, F.; Rouch, A.; Vanucci-Bacque, C.; Baltas, M. MedChemComm 2012, 3, 1356.
doi: 10.1039/c2md20199b |
[21] |
Zhu, X. L.; Zhang, R.; Wu, Q. Y.; Song, Y. J.; Wang, Y. X.; Yang, J. F.; Yang, G. F. J. Agric. Food Chem. 2019, 67, 2774.
doi: 10.1021/acs.jafc.8b06195 |
[22] |
Ikeda, R.; Che, X. F.; Yamaguchi, T.; Ushiyama, M.; Zheng, C. L.; Okumura, H.; Takeda, Y.; Shibayama, Y.; Nakamura, K.; Jeung, H. C.; Furukawa, T.; Sumizawa, T.; Haraguchi, M.; Akiyama, S. I.; Yamada, K. Cancer Sci. 2005, 96, 372.
doi: 10.1111/cas.2005.96.issue-6 |
[23] |
Rainsford, K. D. Curr. Med. Res. Opin. 2006, 22, 1161.
pmid: 16846549 |
[24] |
Pan, Z. Y.; Scheerens, H.; Li, S. J.; Schultz, B. E.; Sprengeler, P. A.; Burrill, L. C.; Mendonca, R. V.; Sweeney, M. D.; Scott, K. C. K.; Grothaus, P. G.; Jeffery, D. A.; Spoerke, J. M.; Honigberg, L. A.; Young, P. R.; Dalrymple, S. A.; Palmer, J. T. ChemMedChem 2007, 2, 58.
doi: 10.1002/(ISSN)1860-7187 |
[25] |
Llovet, J. M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J. F.; de Oliveira, A. C.; Santoro, A.; Raoul, J. L.; Forner, A.; Schwartz, M.; Porta, C.; Zeuzem, S.; Bolondi, L.; Greten, T. F.; Galle, P. R.; Seitz, J. F.; Borbath, I.; Haussinger, D.; Giannaris, T.; Shan, M. H.; Moscovici, M.; Voliotis, D.; Bruix, J. N. Engl. J. Med. 2008, 359, 378.
doi: 10.1056/NEJMoa0708857 |
[26] |
Meng, Z. P.; Li, T.; Ma, X. X.; Wang, X. Q.; Van Ness, C.; Gan, Y. C.; Zhou, H.; Tang, J. F.; Lou, G. Y.; Wang, Y. F.; Wu, J.; Yen, Y.; Xu, R. Z.; Huang, W. D. Mol. Cancer Ther. 2013, 12, 2067.
doi: 10.1158/1535-7163.MCT-13-0314 |
[27] |
Shu, G. W.; Yue, L.; Zhao, W. H.; Xu, C.; Yang, J.; Wang, S. B.; Yang, X. Z. J. Agric. Food Chem. 2015, 63, 8793.
doi: 10.1021/acs.jafc.5b02993 |
[28] |
Gupta, N.; Wish, J. B. Am. J. Kidney Dis. 2017, 69, 815.
doi: 10.1053/j.ajkd.2016.12.011 |
[29] |
Ju, C.; Zhang, H. C.; Yao, S. J.; Dong, S. X.; Cao, D. T.; Wang, F. Y.; Fang, H.; Yu, Y. L. J. Agric. Food Chem. 2019, 67, 6691.
doi: 10.1021/acs.jafc.9b00361 |
[30] |
Feng, X. X.; Wang, K.; Pan, L. X.; Xu, T. H.; Zhang, H. Y.; Fantke, P. J. Agric. Food Chem. 2018, 66, 8489.
doi: 10.1021/acs.jafc.8b02056 |
[31] |
Aupinel, P.; Fortini, D.; Michaud, B.; Marolleau, F.; Tasei, J. N.; Odoux, J. F. Pest Manage. Sci. 2007, 63, 1090.
doi: 10.1002/(ISSN)1526-4998 |
[32] |
Fernandez, P.; Alcantara, R.; Osuna, M. D.; Vila-Aiub, M. M.; De Prado, R. Pest Manage. Sci. 2017, 73, 936.
doi: 10.1002/ps.2017.73.issue-5 |
[33] |
Prime, M. E.; Andersen, O. A.; Barker, J. J.; Brook, M. A.; Cheng, R. K. Y.; Toogood-Johnson, I.; Courtney, S. M.; Brookfield, F. A.; Yarnold, C. J.; Marston, R. W.; Johson, P. D.; Johnsen, S. F.; Palfrey, J. J.; Vaidya, D.; Sayeh, E.; Osamu, I.; Brunella, F.; Shilpa, P.; Anna, P. D.; Sabine, S.; Ina, S.; Andreas, E.; Andreas, S.; Winkler, D.; Leticia, T. S.; Maria, B.; Macdonald, D.; Ignacio, M. S.; Dominguez, C.; John, W. J. Med. Chem. 2012, 55, 1021.
doi: 10.1021/jm201310y |
[34] |
Alessia, C.; Alessia, C.; Ivana, D.; Marilena, M.; Antonio, C.; Françoise, V. B.; Antonio, R.; Filomena, C.; Carlo, F. Eur. J. Med. Chem. 2013, 64, 357.
doi: 10.1016/j.ejmech.2013.03.064 |
[35] |
Xiong, L.; Zhu, X. L.; Shen, Y. Q.; Wishwa, W. K. W. M.; Li, K.; Yang, G. F.; Eur. J. Med. Chem. 2015, 95, 424.
doi: 10.1016/j.ejmech.2015.03.060 pmid: 25841198 |
[36] |
Wang, G. C.; Peng, Z. Y.; Wang, J.; Li, J.; Li, X. Bioorg. Med. Chem. 2016, 24, 5374.
doi: 10.1016/j.bmc.2016.08.061 |
[37] |
Yoshioka, H.; Yamada, A.; Nishiyama, Y.; Kagechika, H.; Hashimoto, Y.; Fujii, S. Bioorg. Med. Chem. 2017, 25, 3461.
doi: 10.1016/j.bmc.2017.04.032 |
[38] |
Xiong, L.; Li, H.; Jiang, L. N.; Ge, J. M.; Yang, W. C.; Zhu, X. L.; Yang, G. F. J. Agric. Food Chem. 2017, 65, 1021.
doi: 10.1021/acs.jafc.6b05134 |
[39] |
Qu, R. Y.; Yang, J. F.; Devendar, P.; Kang, W. M.; Liu, Y. C.; Chen, Q.; Niu, C. W.; Xi, Z.; Yang, G. F. J. Agric. Food Chem. 2017, 65, 11170.
doi: 10.1021/acs.jafc.7b05198 |
[40] |
Lei, S. W.; Zhang, D. D.; Qi, Y. Y.; Chowdhury, S. R.; Sun, R.; Wang, J. T.; Du, Y.; Fu, L.; Jiang, F. Q. Eur. J. Med. Chem. 2020, 205, 112508.
doi: 10.1016/j.ejmech.2020.112508 |
[41] |
Li, H.; Gao, M. Q.; Chen, Y.; Wang, Y. X.; Zhu, X. L.; Yang, G. F. J. Agric. Food Chem. 2020, 68, 14001.
doi: 10.1021/acs.jafc.0c05646 |
[42] |
Cheng, H.; Jiang, W.; Shen, Y. Q.; Pan, X. Y.; Hou, Y. P.; Wu, Q. Y.; Yang, G. F. New J. Chem. 2015, 39, 7281.
doi: 10.1039/C5NJ00215J |
[43] |
Cheng, H.; Nie, R.; Wang, W. Q.; Huang, L.; Liu, K.; Chen, C.; Wu, Q. Y. Chin. J. Org. Chem. 2017, 37, 1368. (in Chinese).
doi: 10.6023/cjoc201702010 |
(程华, 聂忍, 汪万强, 黄琳, 刘科, 陈宬, 吴琼友, 有机化学, 2017, 37, 1368.)
doi: 10.6023/cjoc201702010 |
|
[44] |
Cheng, H.; Song, W.; Nie, R.; Wang, Y. X.; Li, H. L.; Jiang, X. S.; Wu, J. J.; Chen, C.; Wu, Q. Y. Bioorg. Med. Chem. Lett. 2018, 28, 1330.
doi: 10.1016/j.bmcl.2018.03.014 |
[45] |
Cheng, H.; Fu, Y.; Chang, Q.; Zhang, N.; Bu, M. W.; Niu, Y.; Wu, Q. Y.; Chen, C.; Francis, V. Chin. Chem. Lett. 2018, 29, 1897.
doi: 10.1016/j.cclet.2018.10.008 |
[46] |
Wang, W. Q.; Cheng, L.; Peng, H. Y.; Yao, W. Z.; Zhang, R.; Chen, C.; Cheng, H. Chin. J. Org. Chem. 2019, 39, 2851. (in Chinese).
doi: 10.6023/cjoc201904049 |
(汪万强, 程兰, 彭宏英, 姚维忠, 张锐, 陈宬, 程华, 有机化学, 2019, 39, 2851.)
doi: 10.6023/cjoc201904049 |
|
[47] |
Cheng, H.; Yang, L.; Liu, H. F.; Zhang, R.; Chen, C.; Wu, Y.; Jiang, W. Bioorg. Med. Chem. Lett. 2020, 30, 127302.
doi: 10.1016/j.bmcl.2020.127302 |
[48] |
Cheng, H.; Liu, H. F.; Yang, L.; Zhang, R.; Chen, C.; Wu, Y.; Jiang, W. Bioorg. Med. Chem. 2020, 28, 115299.
doi: 10.1016/j.bmc.2019.115299 |
[49] |
Zhu, Y. Q.; Zhang, R.; Sang, W.; Wang, H. J.; Wu, Y.; Yu, B. Y.; Zhang, J. C.; Cheng, H.; Chen, C. Org. Chem. Front. 2020, 7, 1981.
doi: 10.1039/D0QO00361A |
[50] |
Wang, J.; Hu, X.; Yang, J. Synthesis 2014, 46, 2371.
doi: 10.1055/s-00000084 |
[1] | Fakai Zou, Nengzhong Wang, Hui Yao, Hui Wang, Mingguo Liu, Nianyu Huang. Regio- and Stereo-selective Synthesis of 1β-/3R-Aryl Thiosugar [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 593-604. |
[2] | Luyao Li, Zhongwen He, Zhenguo Zhang, Zhenhua Jia, Teck-Peng Loh. Application of Triaryl Carbenium in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 421-437. |
[3] | Qinggang Mei, Qinghan Li. Recent Progress of Visible Light-Induced the Synthesis of C(3) (Hetero)arylthio Indole Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 398-408. |
[4] | Penghui Li, Qingyang Xie, Fuxian Wan, Yuanhong Zhang, Lin Jiang. Synthesis and Fungicidal Activity of Novel Substituted Pyrimidine-5-carboxamides Bearing Cyclopropyl Moiety [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 650-656. |
[5] | Weiqing Yang, Yanbing Ge, Yuanyuan Chen, Ping Liu, Haiyan Fu, Menglin Ma. Design and Synthesis of Fluorescent 1,8-Napthalimide Derivatives and Their Identification of Cysteine [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 180-194. |
[6] | Qianfan Zhao, Yongzheng Chen, Shiming Zhang. Application and Mechanism Study of Carbon-Based Metal-Free Catalysts in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 137-147. |
[7] | Shan Chen, Zhilin Chen, Qiong Hu, Yanshuang Meng, Yue Huang, Pingfang Tao, Liru Lu, Guobao Huang. Recognition of Bis-thiourea Tweezers to Neutral Molecules in Non-Polar Solvent [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 277-281. |
[8] | Huakun Wang, Xiaolong Ren, Yining Xuan. Study of the Halide Salt Catalyzed [3+2] Cycloaddition of α,β-Epoxy Carboxylate with Isocyanate [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 251-258. |
[9] | Lijun Xu, Zongjun Li, Fushe Han, Xiang Gao. N,N-Dimethylformamide-Promoted Synthesis of Fullerene-Fused Oxazoline Derivatives [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 242-250. |
[10] | Yukun Jin, Baoyi Ren, Fushun Liang. Visible Light-Mediated Selective C—F Bond Cleavage of Trifluoromethyl Groups and Its Application in Synthesizing gem-Difluoro-Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 85-110. |
[11] | Cuiyun Ma, Hailan Luo, Fuhua Zhang, Dan Guo, Shuxing Chen, Fei Wang. Green Biosynthesis, Photophysical Properties and Application of 3-Pyrrolyl BODIPY [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 216-223. |
[12] | Bozhen Wang, Jie Zhang, Chunhui Nian, Mingming Jin, Miaomiao Kong, Wulan Li, Wenfei He, Jianzhang Wu. Synthesis and Antitumor Activity of 3,4-Dichlorophenyl Amides [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 232-241. |
[13] | Shihang Yu, Jiawei Liu, Biyu An, Qinghua Bian, Min Wang, Jiangchun Zhong. Asymmetric Synthesis of the Contact Sex Pheromone of Neoclytus acuminatus acuminatus (Fabricius) [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 301-308. |
[14] | Yang Li, Jinding Yuan, Di Zhao. Deep Eutectic Solvent of 1,3-Dimethylurea/L-(+)-Tartaric Acid for the Green Synthesis of (E)-2-Styrylquinoline-3-carboxylic Acid Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3268-3276. |
[15] | Dandan Sui, Nannan Cen, Ruoqu Gong, Yang Chen, Wenbo Chen. Supporting-Electrolyte-Free Electrochemical Synthesis of Trifluoromethylated Oxindoles in Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3239-3245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||