Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (10): 3903-3913.DOI: 10.6023/cjoc202106004 Previous Articles Next Articles
Special Issue: 南开大学化学学科创立100周年; 热点论文虚拟合集
REVIEWS
收稿日期:
2021-06-02
修回日期:
2021-07-01
发布日期:
2021-07-12
通讯作者:
黄有
基金资助:
Received:
2021-06-02
Revised:
2021-07-01
Published:
2021-07-12
Contact:
You Huang
Supported by:
Share
Wei Cai, You Huang. Advances in Organophosphorus Redox Catalysis[J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3903-3913.
[1] |
Wittig, G.; Schollkopf, U. Chem. Ber. 1954, 87, 1318.
doi: 10.1002/(ISSN)1099-0682 |
[2] |
Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
doi: 10.1002/hlca.19190020164 |
[3] |
Appel, R. Angew. Chem., Int. Ed. 1975, 14, 801.
|
[4] |
Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380.
doi: 10.1246/bcsj.40.2380 |
[5] |
Denney, D. B.; DiLeone, R. R. J. Am. Chem. Soc. 1962, 84, 4737.
doi: 10.1021/ja00883a026 |
[6] |
Denney, D. B.; Jones, D. H. J. Am. Chem. Soc. 1969, 91, 5821.
doi: 10.1021/ja01049a020 |
[7] |
Bartlett, P. D.; Baumstark, A. L.; Landis, M. E. J. Am. Chem. Soc. 1973, 95, 6486.
doi: 10.1021/ja00800a074 |
[8] |
Covitz, F.; Westheimer, F. H. J. Am. Chem. Soc. 1963, 85, 1773.
doi: 10.1021/ja00895a017 |
[9] |
Naumann, K.; Zon, G.; Mislow, K. J. Am. Chem. Soc. 1969, 91, 7012.
doi: 10.1021/ja01053a021 |
[10] |
Bryan, M. C.; Dunn, P. J.; Entwistle, D.; Gallou, F.; Koenig, S. G.; Hayler, J. D.; Hickey, M. R.; Hughes, S.; Kopach, M. E.; Moine, G.; Richardson, P.; Roschangar, F.; Steven, A.; Weiberth, F. J. Green Chem. 2018, 20, 5082.
doi: 10.1039/C8GC01276H |
[11] |
Hérault, D.; Nguyen, D. H.; Nuel, D.; Buono, G. Chem. Soc. Rev. 2015, 44, 2508.
doi: 10.1039/C4CS00311J |
[12] |
O'Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass, G. A. Angew. Chem., Int. Ed. 2009, 48, 6836.
doi: 10.1002/anie.v48:37 |
[13] |
O'Brien, C. J.; Lavigne, F.; Coyle, E. E.; Holohan, A. J.; Doonan, B. J. Chem. - Eur. J. 2013, 19, 5854.
doi: 10.1002/chem.201300546 |
[14] |
Coyle, E. E.; Doonan, B. J.; Holohan, A. J.; Walsh, K. A.; Lavigne, F.; Krenske, E. H.; O'Brien, C. J. Angew. Chem., Int. Ed. 2014, 53, 12907.
doi: 10.1002/anie.201406103 |
[15] |
Cao, J.; Zhou, F.; Zhou, J. Angew. Chem., Int. Ed. 2010, 49, 4976.
doi: 10.1002/anie.v49:29 |
[16] |
Longwitz, L.; Spannenberg, A.; Werner, T. ACS Catal. 2019, 9, 9237.
doi: 10.1021/acscatal.9b02456 |
[17] |
Nykaza, T. V.; Cooper, J. C.; Radosevich, A. T. Org. Synth. 2019, 96, 418.
doi: 10.15227/orgsyn.096.0418 |
[18] |
Hoffmann, M.; Deshmukh, S.; Werner, T. Eur. J. Org. Chem. 2015, 2015, 4532.
|
[19] |
Wang, L.; Sun, M.; Ding, M. W. Eur. J. Org. Chem. 2017, 2017, 2568.
doi: 10.1002/ejoc.v2017.18 |
[20] |
Werner, T.; Hoffmann, M.; Deshmukh, S. Eur. J. Org. Chem. 2014, 2014, 6630.
doi: 10.1002/ejoc.201402941 |
[21] |
Werner, T.; Hoffmann, M.; Deshmukh, S. Eur. J. Org. Chem. 2015, 2015, 3286.
doi: 10.1002/ejoc.v2015.15 |
[22] |
Schirmer, M.-L. L.; Adomeit, S.; Werner, T. Org. Lett. 2015, 17, 3078.
doi: 10.1021/acs.orglett.5b01352 |
[23] |
Schirmer, M.-L.; Adomeit, S.; Spannenberg, A.; Werner, T. Chem. - Eur. J. 2016, 22, 2458.
doi: 10.1002/chem.201503744 |
[24] |
Longwitz, L.; Werner, T. Angew. Chem., Int. Ed. 2020, 59, 2760.
doi: 10.1002/anie.v59.7 |
[25] |
Lee, C. J.; Chang, T. H.; Yu, J. K.; Madhusudhan Reddy, G.; Hsiao, M. Y.; Lin, W. Org. Lett. 2016, 18, 3758.
doi: 10.1021/acs.orglett.6b01781 |
[26] |
Saleh, N.; Voituriez, A. J. Org. Chem. 2016, 81, 4371.
doi: 10.1021/acs.joc.6b00473 |
[27] |
Saleh, N.; Blanchard, F.; Voituriez, A. Adv. Synth. Catal. 2017, 359, 2304.
doi: 10.1002/adsc.v359.13 |
[28] |
Zhang, K.; Cai, L.; Yang, Z.; Houk, K. N.; Kwon, O. Chem. Sci. 2018, 9, 1867.
doi: 10.1039/c7sc04381c pmid: 29732112 |
[29] |
Zhang, Q.; Zhu, Y.; Jin, H.; Huang, Y. Chem. Commun. 2017, 53, 3974.
doi: 10.1039/C6CC10155K |
[30] |
Lorton, C.; Castanheiro, T.; Voituriez, A. J. Am. Chem. Soc. 2019, 141, 10142.
doi: 10.1021/jacs.9b02539 |
[31] |
van Kalkeren, H. A.; Bruins, J. J.; Rutjes, F. P. J. T.; van Delft, F. L. Adv. Synth. Catal. 2012, 354, 1417.
doi: 10.1002/adsc.201100967 |
[32] |
Lenstra, D. C.; Wolf, J. J.; Mecinović, J. J. Org. Chem. 2019, 84, 6536.
doi: 10.1021/acs.joc.9b00831 pmid: 31050295 |
[33] |
Kosal, A. D.; Wilson, E. E.; Ashfeld, B. L. Angew. Chem., Int. Ed. 2012, 51, 12036.
doi: 10.1002/anie.201206533 |
[34] |
Andrews, K. G.; Denton, R. M. Chem. Commun. 2017, 53, 7982.
doi: 10.1039/C7CC03076B |
[35] |
White, P. B.; Rijpkema, S. J.; Bunschoten, R. P.; Mecinović, J. Org. Lett. 2019, 21, 1011.
doi: 10.1021/acs.orglett.8b04035 pmid: 30715895 |
[36] |
van Kalkeren, H. A.; Te Grotenhuis, C.; Haasjes, F. S.; Hommersom, C. A.; Rutjes, F. P. J. T.; van Delft, F. L. Eur. J. Org. Chem. 2013, 2013, 7059.
doi: 10.1002/ejoc.v2013.31 |
[37] |
Wang, L.; Wang, Y.; Chen, M.; Ding, M. W. Adv. Synth. Catal. 2014, 356, 1098.
doi: 10.1002/adsc.v356.5 |
[38] |
Wang, L.; Xie, Y. B.; Huang, N. Y.; Yan, J. Y.; Hu, W. M.; Liu, M. G.; Ding, M. W. ACS Catal. 2016, 6, 4010.
doi: 10.1021/acscatal.6b00165 |
[39] |
Bel Abed, H.; Mammoliti, O.; Bande, O.; Van Lommen, G.; Herdewijn, P. Org. Biomol. Chem. 2014, 12, 7159.
doi: 10.1039/C4OB01201A |
[40] |
Lertpibulpanya, D.; Marsden, S. P.; Rodriguez-Garcia, I.; Kilner, C. A. Angew. Chem., Int. Ed. 2006, 45, 5000.
doi: 10.1002/(ISSN)1521-3773 |
[41] |
Headley, C. E.; Marsden, S. P. J. Org. Chem. 2007, 72, 7185.
doi: 10.1021/jo0709908 |
[42] |
Cai, L.; Zhang, K.; Chen, S.; Lepage, R. J.; Houk, K. N.; Krenske, E. H.; Kwon, O. J. Am. Chem. Soc. 2019, 141, 9537.
doi: 10.1021/jacs.9b04803 |
[43] |
van Kalkeren, H. A.; Leenders, S. H. A. M.; Hommersom, C. R. A.; Rutjes, F. P. J. T.; van Delft, F. L. Chem.-Eur. J. 2011, 17, 11290.
doi: 10.1002/chem.201101563 pmid: 21882274 |
[44] |
Longwitz, L.; Jopp, S.; Werner, T. J. Org. Chem. 2019, 84, 7863.
doi: 10.1021/acs.joc.9b00741 pmid: 31135155 |
[45] |
Lenstra, D. C.; Rutjes, F. P. J. T.; Mecinović, J. Chem. Commun. 2014, 50, 5763.
doi: 10.1039/c4cc01861c |
[46] |
Lecomte, M.; Lipshultz, J. M.; Kim-Lee, S. H.; Li, G.; Radosevich, A. T. J. Am. Chem. Soc. 2019, 141, 12507.
doi: 10.1021/jacs.9b06277 pmid: 31345031 |
[47] |
O'Brien, C. J. US 8901365, 2014.
|
[48] |
Buonomo, J. A.; Aldrich, C. C. Angew. Chem., Int. Ed. 2015, 54, 13041.
doi: 10.1002/anie.v54.44 |
[49] |
Hirose, D.; Gazvoda, M.; Košmrlj, J.; Taniguchi, T. Org. Lett. 2016, 18, 4036.
doi: 10.1021/acs.orglett.6b01894 |
[50] |
Beddoe, R. H.; Sneddon, H. F.; Denton, R. M. Org. Biomol. Chem. 2018, 16, 7774.
doi: 10.1039/C8OB01929K |
[51] |
Beddoe, R. H.; Andrews, K. G.; Magné, V.; Cuthbertson, J. D.; Saska, J.; Shannon-Little, A. L.; Shanahan, S. E.; Sneddon, H. F.; Denton, R. M. Science 2019, 365, 910.
doi: 10.1126/science.aax3353 |
[52] |
Harris, J. R.; Haynes, M. T.; Thomas, A. M.; Woerpel, K. A. J. Org. Chem. 2010, 75, 5083.
doi: 10.1021/jo1008367 pmid: 20604518 |
[53] |
Zhao, W.; Yan, P. K.; Radosevich, A. T. J. Am. Chem. Soc. 2015, 137, 616.
doi: 10.1021/ja511889y pmid: 25564133 |
[54] |
Osman, F. H.; El-Samahy, F. A. Chem. Rev. 2002, 102, 629.
doi: 10.1021/cr0000325 |
[55] |
Cadogan, J. I. G.; Cameron-Wood, M.; Mackie, R. K.; Searle, R. J. G. J. Chem. Soc. 1965, 4831.
|
[56] |
Cadogan, J. I. G. Q. Rev., Chem. Soc. 1968, 22, 222.
doi: 10.1039/qr9682200222 |
[57] |
Cadogan, J. I. G.; Todd, M. J. J. Chem. Soc. C 1969, 0, 2808.
doi: 10.1039/J39690002808 |
[58] |
Nykaza, T. V.; Harrison, T. S.; Ghosh, A.; Putnik, R. A.; Radosevich, A. T. J. Am. Chem. Soc. 2017, 139, 6839.
doi: 10.1021/jacs.7b03260 |
[59] |
Schoene, J.; Bel Abed, H.; Schmieder, P.; Christmann, M.; Nazaré, M. Chem.-Eur. J. 2018, 24, 9090.
doi: 10.1002/chem.201800763 pmid: 29644761 |
[60] |
Nykaza, T. V.; Ramirez, A.; Harrison, T. S.; Luzung, M. R.; Radosevich, A. T. J. Am. Chem. Soc. 2018, 140, 3103.
doi: 10.1021/jacs.7b13803 |
[61] |
Tsao, M.-L.; Gritsan, N.; James, T. R.; Platz, M. S.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 2003, 125, 9343.
doi: 10.1021/ja0351591 |
[62] |
Nykaza, T. V.; Cooper, J. C.; Li, G.; Mahieu, N.; Ramirez, A.; Luzung, M. R.; Radosevich, A. T. J. Am. Chem. Soc. 2018, 140, 15200.
doi: 10.1021/jacs.8b10769 |
[63] |
Nykaza, T. V.; Li, G.; Yang, J.; Luzung, M. R.; Radosevich, A. Angew. Chem., Int. Ed. 2020, 59, 4505.
doi: 10.1002/anie.v59.11 |
[64] |
Ghosh, A.; Lecomte, M.; Kim-Lee, S. H.; Radosevich, A. T. Angew. Chem., Int. Ed. 2019, 58, 2864.
doi: 10.1002/anie.v58.9 |
[65] |
Burnett, M. G.; Oswald, T.; Walker, B. J. J. Chem. Soc., Chem. Commun. 1977, 5, 155.
|
[66] |
Cao, S.-H.; Zhang, X.-C.; Wei, Y.; Shi, M. Eur. J. Org. Chem. 2011, 2011, 2668.
doi: 10.1002/ejoc.v2011.14 |
[67] |
Longwitz, L.; Werner, T. Angew. Chem., Int. Ed. 2020, 59, 2760.
doi: 10.1002/anie.v59.7 |
[1] | Hai Xie, Yali Zhang, Xiuting Qin, Yongxin Gu. Synthesis of 1,2,4-Trisubstituted Imidazoles via Sequential Staudinger/aza-Wittig/Aromatization Reaction [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 525-532. |
[2] | Chujie Liao, Hongyao Ruan, Junfeng Jiang, Lun Luo, Yanggen Hu. Synthesis and Activity Evaluation of 3-Aryl-2-imino-benzo[e][1,3]-oxazin-4-ol Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 763-770. |
[3] | Xuechun Zhao, Hui Fan, Yao Xu, Xiaoming Liao, Xiaoxiang Zhang. PPh3-Mediated Synthesis of 3-Hydroxy-2-oxindoles from o-Alkynylnitrobenzenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3997-4002. |
[4] | Haiqiong Li, Mengyun Yin, Fenfen Xie, Zhengbing Zhang, Pan Han, Linhai Jing. Synthesis of Nitrile via Electrochemical Appel Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2229-2235. |
[5] | Jingjie Li, Yuhao Wang, Tiantian Meng, Yiyong Huang. Phosphine-Catalyzed Synthesis of 1,3-Dihydro-3-alkylidene-2H-indol-2-ones [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2222-2228. |
[6] | Zheng Li, Yingchun Gu, Dazhen Xu, Xuening Fei, Lei Zhang. Density Functional Theory Study on the Mechanism of Organophosphine-Catalyzed [4+2] Cycloaddition Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 830-837. |
[7] | Long Zhao, Maolin Yang, Haoran Chen, Mingwu Ding. One-Pot Three-Component Synthesis of 3,4-Dihydroquinazoline Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3740-3746. |
[8] | Fengxing Li, Xin Lu, Xu Liu, Lulu Su, Xiaoliu Li, Hua Chen. Structural Modification of Benzimidazole-Iminosugars and Their Inhibitory Activities against β-Glycosidases [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3643-3651. |
[9] | Xu Liu, Lulu Su, Zhaoxi Zhou, Liping Niu, Ligang Gao, Huanhuan Ju, Fengxing Li, Xiaoliu Li, Hua Chen. Design and Synthesis of Benzimidazole-Iminosugars and Their Inhibitory Activities against Glycosidases [J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2861-2874. |
[10] | Jinni Liu, Yibi Xie, Qingqing Yang, Nianyu Huang, Long Wang. Ugi Four-Component Reaction Based on the in situ Capture of Amines and Subsequent Modification Tandem Cyclization Reaction: "One-Pot" Synthesis of Six- and Seven-Membered Heterocycles [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2374-2383. |
[11] | Hongyan Shi, Ying Zhong, Zhigang Zhao. Synthesis of Multi-substituted 1,4-Dihydroquinoline Derivatives from Morita-Baylis-Hillman (MBH) Carbonates [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 677-687. |
[12] | Zhang Jingjing, Yao Ming, Li Li, Sang Dayong, Xiong Hangxing, Liu Shengpeng. Synthesis of Resveratrol, Piceatannol and Pinosylvin [J]. Chinese Journal of Organic Chemistry, 2020, 40(4): 1062-1067. |
[13] | Tian Jiameng, Ning Qianqian, Ding Haixin, Bai Jiang, Xiao Qiang. Synthesis of Enzyme Substrate 6-Chloro-4-methylumbelliferyl-α-L-idopyranosiduronic Acid [J]. Chinese Journal of Organic Chemistry, 2020, 40(1): 215-220. |
[14] | Tang Jie, Dong Xiangyou, Ouyang Wenliang, Zhu Yunlong, Ding Haixin, Xiao Qiang. Studies on the Total Synthesis of iso-L-Guanosine [J]. Chin. J. Org. Chem., 2019, 39(9): 2609-2615. |
[15] | Cong Tiantian, Wang Huamin, Liu Yuanyuan, Wu Haihong, Zhang Junliang. Phosphine-Mediated Sequential Staudinger/Aza-Michael Addition of Azides with Unsaturated Ketones to Synthesize β-Amino Substituted Ketones [J]. Chinese Journal of Organic Chemistry, 2019, 39(8): 2157-2165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||