Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (10): 3914-3934.DOI: 10.6023/cjoc202105052 Previous Articles Next Articles
Special Issue: 南开大学化学学科创立100周年; 热点论文虚拟合集
REVIEWS
收稿日期:
2021-05-31
修回日期:
2021-06-19
发布日期:
2021-07-05
通讯作者:
何良年
基金资助:
Wenbin Huang, Liqi Qiu, Fangyu Ren, Liangnian He()
Received:
2021-05-31
Revised:
2021-06-19
Published:
2021-07-05
Contact:
Liangnian He
Supported by:
Share
Wenbin Huang, Liqi Qiu, Fangyu Ren, Liangnian He. Advances on Transition-Metal Catalyzed CO2 Hydrogenation[J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3914-3934.
Reaction equation | ΔGo/(kJ•mol–1) | ΔHo/(kJ•mol–1) | Eq. |
---|---|---|---|
CO2 (g)+H2 (g) → HCOOH (l) | +32.9 | –31.2 | (1) |
CO2 (g)+H2 (g)+NH3 (aq)→ HCO2– (aq)+NH4+ (aq) | –9.5 | –84.3 | (2) |
CO2 (aq)+H2 (aq)+NH3 (aq)→ HCO2– (aq)+NH4+ (aq) | –35.4 | –59.8 | (3) |
MHCO3 (aq)+H2 (aq) → HCO2M (aq)+H2O (l) | –0.7 | –20.5 | (4) |
Reaction equation | ΔGo/(kJ•mol–1) | ΔHo/(kJ•mol–1) | Eq. |
---|---|---|---|
CO2 (g)+H2 (g) → HCOOH (l) | +32.9 | –31.2 | (1) |
CO2 (g)+H2 (g)+NH3 (aq)→ HCO2– (aq)+NH4+ (aq) | –9.5 | –84.3 | (2) |
CO2 (aq)+H2 (aq)+NH3 (aq)→ HCO2– (aq)+NH4+ (aq) | –35.4 | –59.8 | (3) |
MHCO3 (aq)+H2 (aq) → HCO2M (aq)+H2O (l) | –0.7 | –20.5 | (4) |
Catalyst precursor | Solvent | Additive | P(CO2/H2)/MPa | T/℃ | Time/h | TON | TOF/h–1 | Ref. | |
---|---|---|---|---|---|---|---|---|---|
[RuH2(PPh3)4] | C6H6/H2O | NEt3 | 2.5/2.5 | r.t. | 20 | 87 | 4 | [ | |
[RuH2(PMe3)4] | scCO2 | NEt3/H2O | 12/8.5 | 50 | 1 | 3700 | 1400 (initial) | [ | |
[RuH2(PMe3)4] | scCO2 | NHMe2 | 13/8 | 100 | 14 | 370000 | 26428 | [ | |
[RuCl2(dppe)2] | scCO2 | NHMe2 | 13/8.5 | 100 | 2.05 | 740000 | 360000 | [ | |
[RuCl(OAc)(PMe3)4] | scCO2 | NEt3/C6F5OH | 12/7 | 50 | 0.3 | 31200 | 95000 | [ | |
[(C6Me6)Ru(DHPHEN)Cl]Cl | H2O | KOH | 3/3 | 120 | 24 | 15400 | 640 | [ | |
[RuCl2(C6H6)]2/DPPM | H2O/THF | NaHCO3 | 0/5 | 70 | 2 | 1400 | 690 | [ | |
[(η6-p-Cymene)Ru(bis-NHC)Cl]PF6 | H2O | KOH | 2/2 | 200 | 75 | 23000 | 300 | [ | |
[(PNP)RuH(Cl)(CO)] | MeOH/H2O | KOH/KHCO3 | — | 150 | 36 | 18420 | 510 | [ | |
[(PNP)RuH(H-BH3)(CO)] | H2O/THF | Na2CO3 | 1.2/3.8 | 79 | 1 | 2200 | 2100 | [ | |
[(PNN)RuH(CO) | Diglyme | K2CO3 | 1.0/3.0 | 200 | 48 | 23000 | 480 | [ | |
[RuCl(H)CO(PNP)] | THF | Morpholine | 3.5/3.5 | 120 | 96 | 1940000 | 20208 | [ | |
[Ru(Acriphos)(PPh3)(Cl)(PhCO2)] | DMSO/H2O | Acetate buffer | 4/8 | 60 | 16 | 16310 | 1019 | [ | |
Ru/PNNN | iPrOH | tBuOK | 4/4 | 90 | 30 | 300000 | 10000 | [ | |
[RhCl(TPPTS)3] | H2O | NHMe2 | 2/2 | r.t. | 12 | 3400 | 280 | [ | |
[RhCl(PPh3)3]/PPh3 | MeOH/DMSO | NEt3 | 4/2 | r.t. | 20 | 2500 | 125 | [ | |
RhCl3•3H2O/CyPPh2 | MeOH | PEI600 | 4/4 | 60 | 32 | 852 | 27 | [ | |
[Cp*Ir(DHPHEN)Cl]Cl | H2O | KOH | 3/3 | 120 | 1 | 21000 | 23000 | [ | |
[(Cp*Ir)2(THBPM)(H2O)2](SO4)2 | H2O | KHCO3 | 2.5/2.5 | 80 | 1 | 79000 | 53800 | [ | |
[(PNP)IrH3] | H2O/THF | KOH | 3/3 | 120 | 48 | 3500000 | 73000 | [ | |
[(PNP)IrH2(OOCH)] | H2O | KOH | 2.8/2.8 | 185 | 2 | 37300 | 18600 | [ | |
[Cp*Ir(N,N')Cl]Cl | H2O | — | 2.5/2.5 | 80 | 0.08 | 1100 | 13000 | [ |
Catalyst precursor | Solvent | Additive | P(CO2/H2)/MPa | T/℃ | Time/h | TON | TOF/h–1 | Ref. | |
---|---|---|---|---|---|---|---|---|---|
[RuH2(PPh3)4] | C6H6/H2O | NEt3 | 2.5/2.5 | r.t. | 20 | 87 | 4 | [ | |
[RuH2(PMe3)4] | scCO2 | NEt3/H2O | 12/8.5 | 50 | 1 | 3700 | 1400 (initial) | [ | |
[RuH2(PMe3)4] | scCO2 | NHMe2 | 13/8 | 100 | 14 | 370000 | 26428 | [ | |
[RuCl2(dppe)2] | scCO2 | NHMe2 | 13/8.5 | 100 | 2.05 | 740000 | 360000 | [ | |
[RuCl(OAc)(PMe3)4] | scCO2 | NEt3/C6F5OH | 12/7 | 50 | 0.3 | 31200 | 95000 | [ | |
[(C6Me6)Ru(DHPHEN)Cl]Cl | H2O | KOH | 3/3 | 120 | 24 | 15400 | 640 | [ | |
[RuCl2(C6H6)]2/DPPM | H2O/THF | NaHCO3 | 0/5 | 70 | 2 | 1400 | 690 | [ | |
[(η6-p-Cymene)Ru(bis-NHC)Cl]PF6 | H2O | KOH | 2/2 | 200 | 75 | 23000 | 300 | [ | |
[(PNP)RuH(Cl)(CO)] | MeOH/H2O | KOH/KHCO3 | — | 150 | 36 | 18420 | 510 | [ | |
[(PNP)RuH(H-BH3)(CO)] | H2O/THF | Na2CO3 | 1.2/3.8 | 79 | 1 | 2200 | 2100 | [ | |
[(PNN)RuH(CO) | Diglyme | K2CO3 | 1.0/3.0 | 200 | 48 | 23000 | 480 | [ | |
[RuCl(H)CO(PNP)] | THF | Morpholine | 3.5/3.5 | 120 | 96 | 1940000 | 20208 | [ | |
[Ru(Acriphos)(PPh3)(Cl)(PhCO2)] | DMSO/H2O | Acetate buffer | 4/8 | 60 | 16 | 16310 | 1019 | [ | |
Ru/PNNN | iPrOH | tBuOK | 4/4 | 90 | 30 | 300000 | 10000 | [ | |
[RhCl(TPPTS)3] | H2O | NHMe2 | 2/2 | r.t. | 12 | 3400 | 280 | [ | |
[RhCl(PPh3)3]/PPh3 | MeOH/DMSO | NEt3 | 4/2 | r.t. | 20 | 2500 | 125 | [ | |
RhCl3•3H2O/CyPPh2 | MeOH | PEI600 | 4/4 | 60 | 32 | 852 | 27 | [ | |
[Cp*Ir(DHPHEN)Cl]Cl | H2O | KOH | 3/3 | 120 | 1 | 21000 | 23000 | [ | |
[(Cp*Ir)2(THBPM)(H2O)2](SO4)2 | H2O | KHCO3 | 2.5/2.5 | 80 | 1 | 79000 | 53800 | [ | |
[(PNP)IrH3] | H2O/THF | KOH | 3/3 | 120 | 48 | 3500000 | 73000 | [ | |
[(PNP)IrH2(OOCH)] | H2O | KOH | 2.8/2.8 | 185 | 2 | 37300 | 18600 | [ | |
[Cp*Ir(N,N')Cl]Cl | H2O | — | 2.5/2.5 | 80 | 0.08 | 1100 | 13000 | [ |
Catalyst precursor | Solvent | Additive | P(CO2/H2)/MPa | T/℃ | Time/h | TON | TOF/(h–1) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Fe(BF4)2•6H2O/PP3 | MeOH | NaHCO3 | 0/6.0 | 100 | 20 | 7546 | 377 | [ | |
[(PNP)Fe(H2)(CO)] | H2O/THF | NaOH | 0.33/0.67 | 80 | 5 | 790 | 160 | [ | |
[(PNNNP)Fe(H)Br(CO)] | EtOH | DBU | 4.0/4.0 | 80 | 21 | 10275 | 489 | [ | |
[(PNP)Fe(H)(OOCH)(CO)] | THF | DBU/LiOTf | 3.5/3.5 | 80 | 1 | 46100 | 23200 | [ | |
[Fe(rac-P4)(CH3CN)2](BF4)2 | MeOH | NaHCO3 | 0/6.0 | 80 | 24 | 1200 | 50 | [ | |
[Fe] complex | EtOH/H2O | NaHCO3 | 0/3.0 | 120 | 24 | 447 | 19 | [ | |
Co(BF4)2•6H2O/PP3 | MeOH | NaHCO3 | 0/6.0 | 120 | 20 | 3877 | 190 | [ | |
[Co(DMPE)2H] | THF | Verkade's base | 1.0/1.0 | 21 | n/a | 9400 | 74000 | [ | |
[Cp*Co(4,4'-DHBP)(H2O)](PF6)2 | H2O | NaHCO3 | 2.0/2.0 | 100 | 1 | 39 | 39 | [ | |
[(PNP5)Co(CO)2]Cl | CH3CN | DBU/LiOTf | 3.5/3.5 | 45 | 1 | 29000 | 5700 | [ | |
[(PCP)Ni(H)])RuH(CO)] | MeOH | NaHCO3 | 0/5.5 | 150 | 20 | 3000 | 150 | [ | |
Cu(OAc)2•H2O | 1,4-Dioxane | DBU | 2.0/2.0 | 100 | 116 | 167 | 1.4 | [ | |
[Cu(triphos)(MeCN)]PF6 | CH3CN | DBU | 2.0/2.0 | 140 | 2 | 96 | 48 | [ | |
[(PMeNP4)Mo(C2H4)(OOCH)] | 1,4-Dioxane | DBU/LiOTf | 3.5/3.5 | 100 | 16 | 35 | 2 | [ |
Catalyst precursor | Solvent | Additive | P(CO2/H2)/MPa | T/℃ | Time/h | TON | TOF/(h–1) | Ref. | |
---|---|---|---|---|---|---|---|---|---|
Fe(BF4)2•6H2O/PP3 | MeOH | NaHCO3 | 0/6.0 | 100 | 20 | 7546 | 377 | [ | |
[(PNP)Fe(H2)(CO)] | H2O/THF | NaOH | 0.33/0.67 | 80 | 5 | 790 | 160 | [ | |
[(PNNNP)Fe(H)Br(CO)] | EtOH | DBU | 4.0/4.0 | 80 | 21 | 10275 | 489 | [ | |
[(PNP)Fe(H)(OOCH)(CO)] | THF | DBU/LiOTf | 3.5/3.5 | 80 | 1 | 46100 | 23200 | [ | |
[Fe(rac-P4)(CH3CN)2](BF4)2 | MeOH | NaHCO3 | 0/6.0 | 80 | 24 | 1200 | 50 | [ | |
[Fe] complex | EtOH/H2O | NaHCO3 | 0/3.0 | 120 | 24 | 447 | 19 | [ | |
Co(BF4)2•6H2O/PP3 | MeOH | NaHCO3 | 0/6.0 | 120 | 20 | 3877 | 190 | [ | |
[Co(DMPE)2H] | THF | Verkade's base | 1.0/1.0 | 21 | n/a | 9400 | 74000 | [ | |
[Cp*Co(4,4'-DHBP)(H2O)](PF6)2 | H2O | NaHCO3 | 2.0/2.0 | 100 | 1 | 39 | 39 | [ | |
[(PNP5)Co(CO)2]Cl | CH3CN | DBU/LiOTf | 3.5/3.5 | 45 | 1 | 29000 | 5700 | [ | |
[(PCP)Ni(H)])RuH(CO)] | MeOH | NaHCO3 | 0/5.5 | 150 | 20 | 3000 | 150 | [ | |
Cu(OAc)2•H2O | 1,4-Dioxane | DBU | 2.0/2.0 | 100 | 116 | 167 | 1.4 | [ | |
[Cu(triphos)(MeCN)]PF6 | CH3CN | DBU | 2.0/2.0 | 140 | 2 | 96 | 48 | [ | |
[(PMeNP4)Mo(C2H4)(OOCH)] | 1,4-Dioxane | DBU/LiOTf | 3.5/3.5 | 100 | 16 | 35 | 2 | [ |
Catalyst precursor | Substrate | Solvent | Additive | P(CO2/H2)a | T/℃ | Time/h–1 | TON | TOF/h–1 | Ref. |
---|---|---|---|---|---|---|---|---|---|
[Ru3(CO)12] | CO2 | NMP | KI | 2/6 | 240 | 3 | 32 | 10 | [ |
[Ru(Cl)(OAc)(PMe)]/Sc(OTf)/ [(PNN)Ru(H)(CO)] | CO2 | 1,4-Dioxane | — | 1/3 | 75 | 16 | 21 | 1.3 | [ |
[(PNP)Ru(HBH)H(CO)] | CO2 | THF | K3PO4 | 0.25/5 | 95 | 54 | 550 | 10 | [ |
[Ru(triphos)(tmm)]2 | CO2 | THF | EtOH | 2/6 | 140 | 24 | 221 | 37 | [ |
[(PNN)Ru(H)Cl(CO)] | CO2 | DMSO | Cs2CO3/K3PO4 | 0.1/6 | 150 | 96 | n/ab | n/a | [ |
[(PNP)Ru(HBH3)H(CO)] | CO2 | THF | PEHAc, K3PO4 | 0.75/6.75 | 145 | 200 | 1200 | 6 | [ |
[(PNP)Ru(H)Cl(CO)] | Ethylene carbonate | THF | KOtBu | 0/6 | 140 | 72 | 87000 | 1200 | [ |
[(PNN)Ru(H)(CO)] | urea | THF | — | 0/1.36 | 110 | 72 | n/a | n/a | [ |
[(PNN)Ru(H)(CO)] | HCOOMe | THF | — | 0/5 | 110 | 14 | 4700 | 335 | [ |
[FeCl2{κ3-HC(pz)3}] | CO2 | — | PEHA | 1.9/5.6 | 80 | 36 | 2387 | 66 | [ |
[(PNP)Fe(H)(CO)] | CO2 | 1,4-Dioxane | Morpholine | 1.7/7.9 | 100 | 16 | 590 | 37 | [ |
[(PNP)MnBr(CO)2] | CO2 | THF | K3PO4 | 3/3 | 110 | 24~36 | 36 | n/a | [ |
Co(BF4)2•6H2O/PP3 | CO2 | THF/EtOH | HNTf2 | 2/7 | 100 | 24 | 50 | 2 | [ |
Catalyst precursor | Substrate | Solvent | Additive | P(CO2/H2)a | T/℃ | Time/h–1 | TON | TOF/h–1 | Ref. |
---|---|---|---|---|---|---|---|---|---|
[Ru3(CO)12] | CO2 | NMP | KI | 2/6 | 240 | 3 | 32 | 10 | [ |
[Ru(Cl)(OAc)(PMe)]/Sc(OTf)/ [(PNN)Ru(H)(CO)] | CO2 | 1,4-Dioxane | — | 1/3 | 75 | 16 | 21 | 1.3 | [ |
[(PNP)Ru(HBH)H(CO)] | CO2 | THF | K3PO4 | 0.25/5 | 95 | 54 | 550 | 10 | [ |
[Ru(triphos)(tmm)]2 | CO2 | THF | EtOH | 2/6 | 140 | 24 | 221 | 37 | [ |
[(PNN)Ru(H)Cl(CO)] | CO2 | DMSO | Cs2CO3/K3PO4 | 0.1/6 | 150 | 96 | n/ab | n/a | [ |
[(PNP)Ru(HBH3)H(CO)] | CO2 | THF | PEHAc, K3PO4 | 0.75/6.75 | 145 | 200 | 1200 | 6 | [ |
[(PNP)Ru(H)Cl(CO)] | Ethylene carbonate | THF | KOtBu | 0/6 | 140 | 72 | 87000 | 1200 | [ |
[(PNN)Ru(H)(CO)] | urea | THF | — | 0/1.36 | 110 | 72 | n/a | n/a | [ |
[(PNN)Ru(H)(CO)] | HCOOMe | THF | — | 0/5 | 110 | 14 | 4700 | 335 | [ |
[FeCl2{κ3-HC(pz)3}] | CO2 | — | PEHA | 1.9/5.6 | 80 | 36 | 2387 | 66 | [ |
[(PNP)Fe(H)(CO)] | CO2 | 1,4-Dioxane | Morpholine | 1.7/7.9 | 100 | 16 | 590 | 37 | [ |
[(PNP)MnBr(CO)2] | CO2 | THF | K3PO4 | 3/3 | 110 | 24~36 | 36 | n/a | [ |
Co(BF4)2•6H2O/PP3 | CO2 | THF/EtOH | HNTf2 | 2/7 | 100 | 24 | 50 | 2 | [ |
Entry | Amine | Capture solvent | Captured asa | Precat. | P(H2)/MPa | T/℃ (t/h) | Yield/% (TON) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 1 | Glycol | b | RhCl3•3H2O+L-1b | 4.0 | 60 (16) | 55 (726) | [ |
2 | 2 | — | b | RhCl3•3H2O+L-2b | 4.0 | 60 (16) | 97 (169) | [ |
3 | 3 | — | c | d | 2.0 | 120 (1) | n/ag (248) | [ |
4 | 4 | Water | b | C-1 | 5.0 | 55 (20) | 95 (7375) | [ |
5 | PEHAe | Water | b+c | C-2 | 8.0 | 50 (10) | 53 (255) | [ |
6 | 5 | Water | b | C-3f | 11.0 | 130 (12) | 93 (700) | [ |
Entry | Amine | Capture solvent | Captured asa | Precat. | P(H2)/MPa | T/℃ (t/h) | Yield/% (TON) | Ref. |
---|---|---|---|---|---|---|---|---|
1 | 1 | Glycol | b | RhCl3•3H2O+L-1b | 4.0 | 60 (16) | 55 (726) | [ |
2 | 2 | — | b | RhCl3•3H2O+L-2b | 4.0 | 60 (16) | 97 (169) | [ |
3 | 3 | — | c | d | 2.0 | 120 (1) | n/ag (248) | [ |
4 | 4 | Water | b | C-1 | 5.0 | 55 (20) | 95 (7375) | [ |
5 | PEHAe | Water | b+c | C-2 | 8.0 | 50 (10) | 53 (255) | [ |
6 | 5 | Water | b | C-3f | 11.0 | 130 (12) | 93 (700) | [ |
[1] |
https://www.iea.org/reports/global-energy-co2-statusreport-2019
|
[2] |
Wuebbles, D. J.; Easterling, D. R.; Hayhoe, K.; Knutson, T.; Kopp, R. E.; Kossin, J. P.; Kunkel, K. E.; LeGrande, A. N.; Mears, C.; Sweet, W. V.; Taylor, P. C.; Vose, R. S.; Wehner, M. F. In Climate Science Special Report: Fourth National Climate Assessment, Vol. I, U.S. Global Change Research Program, Washington, DC, 2017, pp. 35-72.
|
[3] |
(a) Zhang, L. L.; Han, Z. B.; Zhang, L.; Li, M. X.; Ding, K. L. Chin. J. Org. Chem. 2016, 36, 1824. (in Chinese)
|
(张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学, 2016, 36, 1824.)
|
|
(b) Dong, K. W.; Razzaq, R.; Hu, Y. Y.; Ding, K. L. Top. Curr. Chem. 2017, 375, 23.
|
|
(c) Li, Y.; Wang, Z.; Liu, Q. Chin. J. Org. Chem. 2017, 37, 1978. (in Chinese)
doi: 10.6023/cjoc201702038 |
|
(李勇, 王征, 刘庆彬, 有机化学, 2017, 37, 1978.)
doi: 10.6023/cjoc201702038 |
|
(d) Zhang, W. Z.; Zhang, N.; Guo, C. X.; Lu, X. B. Chin. J. Org. Chem. 2017, 37, 1309. (in Chinese)
doi: 10.6023/cjoc201701031 |
|
(张文珍, 张宁, 郭春晓, 吕小兵, 有机化学, 2017, 37, 1309.)
|
|
(e) Tortajada, A.; Juliá-Hernández, F.; Börjesson, M.; Moragas, T.; Martin, R. Angew. Chem., Int. Ed. 2018, 57, 15948.
doi: 10.1002/anie.v57.49 |
|
(f) Wang, Q.; Sun, J. Chem. Bull. 2018, 81, 312. (in Chinese)
|
|
(王强, 孙京, 化学通报, 2018, 81, 312.)
|
|
(g) Zhang, Y.; Cen, J.; Xiong, W.; Qi, Z.; Jiang, H. Prog. Chem. 2018, 30, 547. (in Chinese)
doi: 10.7536/PC171251 |
|
(张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰, 化学进展, 2018, 30, 547.)
doi: 10.7536/PC171251 |
|
(h) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382.
doi: 10.1039/C8CS00281A |
|
(i) Chen, L.; Xie, J. H. Chin. J. Org. Chem. 2020, 40, 247. (in Chinese)
doi: 10.6023/cjoc202000005 |
|
(程磊, 谢建华, 有机化学, 2020, 40, 247.)
doi: 10.6023/cjoc202000005 |
|
(j) Ye, J. H.; Ju, T.; Huang, H.; Liao, L. L.; Yu, D. G. Acc. Chem. Res. 2021, 54, 2518.
doi: 10.1021/acs.accounts.1c00135 |
|
(k) Yi, Y. P.; Hang, W.; Xi, C. J. Chin. J. Org. Chem. 2021, 41, 80. (in Chinese)
doi: 10.6023/cjoc202007013 |
|
(易雅平, 杭炜, 席婵娟, 有机化学, 2021, 41, 80.)
doi: 10.6023/cjoc202007013 |
|
(o) Zhang, Z.; Gong, L.; Zhou, X. Y.; Yan, S. S.; Li, J.; Yu, D. G. Acta Chim. Sinica 2019, 77, 783. (in Chinese)
doi: 10.6023/A19060208 |
|
(张振, 龚莉, 周晓渝, 颜思顺, 李静, 余达刚, 化学学报, 2019, 77, 783.)
doi: 10.6023/A19060208 |
|
(p) Zhou, C.; Li, M.; Yu, J. T.; Sun, S.; Cheng, J. Chin. J. Org. Chem. 2020, 40, 2221. (in Chinese)
doi: 10.6023/cjoc202003039 |
|
(周聪, 李渺, 于金涛, 孙松, 成江, 有机化学, 2020, 40, 2221.)
doi: 10.6023/cjoc202003039 |
|
(q) Chen, K. H.; Li, H. R.; He, L. N. Chin. J. Org. Chem. 2020, 40, 2195.
doi: 10.6023/cjoc202004030 |
|
(陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40, 2195.)
doi: 10.6023/cjoc202004030 |
|
(r) Guo, X.; Wang, Y. Z.; Chen, J.; Li, G. Q.; Xia, J. B. Chin. J. Org. Chem. 2020, 40, 2208. (in Chinese)
doi: 10.6023/cjoc202002032 |
|
(郭霄, 王亚洲, 陈洁, 李公强, 夏纪宝, 有机化学, 2020, 40, 2208.)
doi: 10.6023/cjoc202002032 |
|
[4] |
Leitner, W. Angew. Chem., Int. Ed. 1995, 34, 2207.
doi: 10.1002/(ISSN)1521-3773 |
[5] |
(a) Boddien, A.; Mellmann, D.; Gärtner, F.; Jackstell, R.; Junge, H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011, 333, 1733.
doi: 10.1126/science.1206613 pmid: 21940890 |
(b) Sordakis, K.; Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372.
doi: 10.1021/acs.chemrev.7b00182 pmid: 21940890 |
|
[6] |
Ding, S. T.; Jiao, N. Angew. Chem., Int. Ed. 2012, 51, 9226.
doi: 10.1002/anie.201200859 |
[7] |
Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A. V.; Wezendonk, T. A.; Makkee, M.; Gascon, J.; Kapteijn, F. Chem. Rev. 2017, 117, 9804.
doi: 10.1021/acs.chemrev.6b00816 pmid: 28656757 |
[8] |
Sordakis, K, Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Chem. Rev. 2018, 118, 372.
doi: 10.1021/acs.chemrev.7b00182 |
[9] |
Farlow, M. W.; Adkins, H. J. Am. Chem. Soc. 1935, 57, 2222.
doi: 10.1021/ja01314a054 |
[10] |
Inoue, Y.; Izumida, H.; Sasaki, Y.; Hashimoto, H. Chem. Lett. 1976, 863.
|
[11] |
Jessop, P. G.; Ikariya, T.; Noyori, R. Nature 1994, 368, 231.
doi: 10.1038/368231a0 |
[12] |
Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1994, 116, 8851.
doi: 10.1021/ja00098a072 |
[13] |
Kröcher, O.; Köppel, R. A.; Baiker, A. Chem. Commun. 1997, 453.
|
[14] |
Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C. C.; Jessop, P. G. J. Am. Chem. Soc. 2002, 124, 7963.
doi: 10.1021/ja0167856 |
[15] |
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Arakawa, H.; Kasuga, K. Organometallics 2004, 23, 1480.
doi: 10.1021/om030382s |
[16] |
Federsel, C.; Jackstell, R.; Boddien, A.; Laurenczy, G.; Beller, M. ChemSusChem 2010, 3, 1048.
doi: 10.1002/cssc.v3:9 |
[17] |
Sanz, S.; Azua, A.; Peris, E. Dalton Trans. 2010, 39, 6339.
doi: 10.1039/c003220d |
[18] |
Liu, Q.; Wu, L.; Gulak, S.; Rockstroh, N.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2014, 53, 7085.
doi: 10.1002/anie.201400456 |
[19] |
Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J. P.; May, R. B.; Prakash, G. K. S.; Olah, G. A. ChemSusChem 2015, 8, 1442.
doi: 10.1002/cssc.201403458 pmid: 25824142 |
[20] |
Huff, C. A.; Sanford, M. S. ACS Catal. 2013, 3, 2412.
doi: 10.1021/cs400609u |
[21] |
Zhang, L.; Han, Z.; Zhao, X.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2015, 54, 6186.
doi: 10.1002/anie.201500939 |
[22] |
Rohmann, K.; Kothe, J.; Haenel, M. W.; Englert, U.; Hölscher, M.; Leitner, W. Angew. Chem., Int. Ed. 2016, 55, 8966.
doi: 10.1002/anie.201603878 |
[23] |
Weilhard, A.; Qadir, M. I. Sans, V. Dupont, J. ACS Catal. 2018, 8, 1628.
doi: 10.1021/acscatal.7b03931 |
[24] |
Zhang, F. H.; Liu, C.; Li, W.; Tian, G. L.; Xie, J. H.; Zhou, Q. L. Chin. J. Chem. 2018, 36, 1000.
doi: 10.1002/cjoc.201800278 |
[25] |
Westhues, N.; Belleflamme, M.; Klankermayer, J. ChemCatChem 2019, 11, 5269.
doi: 10.1002/cctc.201900627 |
[26] |
Malaza, S. S. P.; Makhubela, B. C. E. Journal of CO2 Utilization 2020, 39, 101149.
|
[27] |
Tsai, J. C.; Nicholas, K.M. J. Am. Chem. Soc. 1992, 114, 5117.
doi: 10.1021/ja00039a024 |
[28] |
Hutschka, F.; Dedieu, A.; Eichberger, M.; Fornika, R.; Leitner, W. J. Am. Chem. Soc. 1997, 119, 4432.
doi: 10.1021/ja961579x |
[29] |
Zhang, J. J.; Qian, Q. L.; Wang, Y.; Bediako, B. B.; Cui, M.; Yang, G. Y.; Han, B. X. Green Chem. 2019, 21, 233.
doi: 10.1039/C8GC03476A |
[30] |
Laureanti, J. A.; Buchko, G. W.; Katipamula, S.; Su, Q.; Linehan, J. C.; Zadvornyy, O. A.; Peters, J. W.; O'Hagan, M. ACS Catal. 2019, 9, 620.
doi: 10.1021/acscatal.8b02615 |
[31] |
Gassner, F.; Leitner, W. J. Chem. Soc., Chem. Commun. 1993, 1465.
|
[32] |
Ezhova, N. N.; Kolesnichenko, N. V.; Bulygin, A. V.; Slivinskii, E. V.; Han, S. Russ. Chem. Bull. 2002, 51, 2165.
doi: 10.1023/A:1022162713837 |
[33] |
Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.
doi: 10.1039/c3gc41265b |
[34] |
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Arakawa, H.; Kasuga, K. Organometallics 2004, 23, 1480.
doi: 10.1021/om030382s |
[35] |
Himeda, Y.; Onozawa-Komatsuzaki, N.; Sugihara, H.; Kasuga, K. Organometallics 2007, 26, 702.
doi: 10.1021/om060899e |
[36] |
Ogo, S.; Kabe, R; Hayashi, H.; Harada, R.; Fukuzumi, S. Dalton Trans. 2006, 4657.
|
[37] |
Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168.
doi: 10.1021/ja903574e pmid: 19775157 |
[38] |
Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. J. Am. Chem. Soc. 2011, 133, 9274.
doi: 10.1021/ja2035514 pmid: 21612297 |
[39] |
Azua, A.; Sanz, S.; Peris, E. Chem.-Eur. J. 2011, 17, 3963.
doi: 10.1002/chem.201002907 |
[40] |
Liu, C.; Xie, J. H.; Tian, G. L.; Li, W.; Zhou, Q. L. Chem. Sci. 2015, 6, 2928.
doi: 10.1039/C5SC00248F |
[41] |
Fidalgo, J.; Ruiz-Castañeda, M.; García-Herbosa, G.; Carbayo, A.; Jalόn, F. A.; Rodríguez, A. M.; Manzano, B. R.; Espino, G. Inorg. Chem. 2018, 57, 14186.
doi: 10.1021/acs.inorgchem.8b02164 pmid: 30395446 |
[42] |
Kanega, R.; Ertem, M. Z.; Onishi, N.; Szalda, D. J.; Fujita, E. Organometallics 2020, 39, 1519.
doi: 10.1021/acs.organomet.9b00809 |
[43] |
Hull, J. F.; Himeda, Y.; Wang, W. H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. Nat. Chem. 2012, 4, 383.
doi: 10.1038/nchem.1295 |
[44] |
Lu, S. M.; Wang, Z.; Li, J.; Xiao, J.; Li, C. Green Chem. 2016, 18, 4553.
doi: 10.1039/C6GC00856A |
[45] |
Evans, G. O.; Newell, C. J. Inorg. Chim. Acta 1978, 31, L387.
doi: 10.1016/S0020-1693(00)94933-8 |
[46] |
Tai, C. C.; Chang, T.; Roller, B.; Jessop, P. G. Inorg. Chem. 2003, 42, 7340.
doi: 10.1021/ic034881x |
[47] |
Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. Angew. Chem., Int. Ed. 2010, 49, 9777.
doi: 10.1002/anie.201004263 |
[48] |
Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. J. Am. Chem. Soc. 2012, 134, 20701.
doi: 10.1021/ja307924a |
[49] |
Montandon-Clerc, M.; Laurenczy, G. J. Catal. 2018, 362, 78.
doi: 10.1016/j.jcat.2018.03.030 |
[50] |
Bertini, F.; Gorgas, N.; Stöger, B.; Peruzzini, M.; Veiros, L. F.; Kirchner, K.; Gonsalvi, L. ACS Catal. 2016, 6, 2889.
doi: 10.1021/acscatal.6b00416 |
[51] |
Jayarathne, U.; Hazari, N.; Bernskoetter, W. H. ACS Catal. 2018, 8, 1338.
doi: 10.1021/acscatal.7b03834 |
[52] |
(a) Liu, W. P.; Sahoo, B.; Junge, K.; Beller, M. Acc. Chem. Res. 2018, 51, 1858.
doi: 10.1021/acs.accounts.8b00262 |
(b) Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem.-Eur. J. 2012, 18, 72.
doi: 10.1002/chem.v18.1 |
|
[53] |
Tai, C. C.; Chang, T.; Roller, B.; Jessop, P. G. Inorg. Chem. 2003, 42, 7340.
doi: 10.1021/ic034881x |
[54] |
Affan, M. A.; Jessop, P. G. Inorg. Chem. 2017, 56, 7301.
doi: 10.1021/acs.inorgchem.7b01242 |
[55] |
Affan, M. A.; Schatte, G.; Jessop, P. G. Inorg. Chem. 2020, 59, 14275.
doi: 10.1021/acs.inorgchem.0c01401 |
[56] |
Watari, R.; Kayaki, Y.; Hirano, S.; Matsumoto, N.; Ikariya, T. Adv. Synth. Catal. 2015, 357, 1369.
doi: 10.1002/adsc.v357.7 |
[57] |
Zall, C. M.; Linehan, J. C.; Appel, A. M. ACS Catal. 2015, 5, 5301.
doi: 10.1021/acscatal.5b01646 |
[58] |
Li, R. P.; Zhao, Y. F.; Li, Z. Y.; Wu, Y. Y.; Wang, J. J.; Liu, Z. M. Sci. China Chem. 2019, 62, 256.
doi: 10.1007/s11426-018-9358-6 |
[59] |
(a) Du, C. Y.; Chen, Y. F. Acta Chim. Sinica 2020, 78, 938. (in Chinese)
doi: 10.6023/A20060268 |
(杜重阳, 陈耀峰, 化学学报, 2020, 78, 938.)
doi: 10.6023/A20060268 |
|
(b) Du, C. Y.; Chen, Y. F. Chin. J. Chem. 2020, 38, 1057.
doi: 10.1002/cjoc.v38.10 |
|
[60] |
Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
doi: 10.1002/anie.v50.42 |
[61] |
Zhang, Y.; MacIntosh, A. D.; Wong, J. L.; Bielinski, E. A.; Williard, P. G.; Mercado, B. Q.; Hazari, N.; Bernskoetter, W. H. Chem. Sci. 2015, 6, 4291.
doi: 10.1039/C5SC01467K |
[62] |
Bertini, F.; Mellone, I.; Ienco, A.; Peruzzini, M.; Gonsalvi, L. ACS Catal. 2015, 5, 1254.
doi: 10.1021/cs501998t |
[63] |
Zhu, F.; Zhu-Ge, L.; Yang, G.; Zhou, S. ChemSusChem 2015, 8, 609.
doi: 10.1002/cssc.v8.4 |
[64] |
Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Chem.-Eur. J. 2012, 18, 72.
doi: 10.1002/chem.v18.1 |
[65] |
Jeletic, M. S.; Mock, M. T.; Appel, A. M.; Linehan, J. C. J. Am. Chem. Soc. 2013, 135, 11533.
doi: 10.1021/ja406601v |
[66] |
Badiei, Y. M.; Wang, W.-H.; Hull, J. F.; Szalda, D. J.; Muckerman, J. T.; Himeda, Y.; Fujita, E. Inorg. Chem. 2013, 52, 12576.
doi: 10.1021/ic401707u pmid: 24131038 |
[67] |
Spentzos, A. Z.; Barnes, C. L.; Bernskoetter, W. H. Inorg. Chem. 2016, 55, 8225.
doi: 10.1021/acs.inorgchem.6b01454 pmid: 27454669 |
[68] |
Enthaler, S.; Bruck, A.; Kammer, A.; Junge, H.; Irran, E.; Gulak, S. ChemCatChem 2015, 7, 65.
doi: 10.1002/cctc.v7.1 |
[69] |
Zhang, Y. Y.; Williard, P. G.; Bernskoetter, W. H. Organometallics 2016, 35, 860.
doi: 10.1021/acs.organomet.5b00955 |
[70] |
Reuss, G.; Disteldorf, W.; Gamer, A. O.; Hilt, A. In UllmannÏs Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2000.
|
[71] |
Bontemps, S.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc. 2014, 136, 4419.
doi: 10.1021/ja500708w |
[72] |
Ren, X. Y.; Zheng, Z. Y.; Zhang, L.; Wang, Z.; Xia, C. G.; Ding, K. L. Angew. Chem. 2017, 129, 316.
doi: 10.1002/ange.v129.1 |
[73] |
Hua, K. M.; Liu, X. F.; Wei, B. Y.; Shao, Z. L.; Deng, Y. C.; Zhong, L. S.; Wang, H.; Sun, Y. H. Green Chem. 2021, DOI: 10.1039/d0gc03913f.
doi: 10.1039/d0gc03913f |
[74] |
(a) Arpe, H. J. Industrial Organic Chemistry, Vol. 5, Wiley-VCH, Weinheim, 2010.
|
(b) Bertau, M.; Offermanns, H.; Plass, L.; Schmidt, F.; Wernicke, H. J. Methanol: The Basic Chemical and Energy Feedstock of the Future, Springer, Amsterdam, 2013.
|
|
(c) Baerns, M.; Behr, A.; Brehm, A.; Gmehling, J.; Hofmann, H.; Onken, U.; Renken, A. Technische Chemie, Wiley-VCH, Weinheim, 2006.
|
|
[75] |
(a) Gaikwad, R.; Bansode, A.; Urakawa, A. J. Catal. 2016, 343, 127.
doi: 10.1016/j.jcat.2016.02.005 |
(b) Xie, S.; Zhang, W.; Lan, X.; Lin, H. ChemSusChem 2020, 13, 6141.
|
|
[76] |
Jessop, P. G. In The Handbook of Homogeneous Hydrogenation, Eds.: de Vries, J. G.; Elsevier, C. J., Wiley-VCH, Weinheim, 2007, p. 489.
|
[77] |
(a) Tominaga, K. I.; Sasaki, Y.; Kawai, M.; Watanabe, T.; Saito, M. J. Chem. Soc. Chem. Commun. 1993, 629.
|
(b) Tominaga, K. i.; Sasaki, Y.; Watanabe, T.; Saito, M. Bull. Chem. Soc. Jpn. 1995, 68, 2837.
doi: 10.1246/bcsj.68.2837 |
|
[78] |
(a) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.
doi: 10.1038/nchem.1089 |
(b) Balaraman, E.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 11702.
doi: 10.1002/anie.201106612 |
|
(c) Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 16756.
doi: 10.1021/ja1080019 |
|
[79] |
Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122.
doi: 10.1021/ja208760j |
[80] |
Rezayee, N. M.; Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 1028.
doi: 10.1021/ja511329m pmid: 25594380 |
[81] |
Wesselbaum, S.; Stein, T. v.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499.
doi: 10.1002/anie.201202320 |
[82] |
Khusnutdinova, J. R.; Garg, J. A.; Milstein, D. ACS Catal. 2015, 5, 2416.
doi: 10.1021/acscatal.5b00194 |
[83] |
Qian, Q. L.; Cui, M.; He, Z. H.; Wu, C. Y.; Zhu, Q. G.; Zhang, Z. F.; Ma, J.; Yang, G. Y.; Zhang, J. J.; Han, B. X. Chem. Sci. 2015, 6, 5685.
doi: 10.1039/C5SC02000J |
[84] |
Thenert, K.; Beydoun, K.; Wiesenthal, J.; Leitner, W.; Klankermayer, J. Angew. Chem., Int. Ed. 2016, 55, 12266.
doi: 10.1002/anie.201606427 |
[85] |
Wang, Z.; Zhao, Z. W.; Li, Y.; Zhong, Y. X.; Zhang, Q. Y.; Liu, Q. B.; Solan, G. A.; Ma, Y. P.; Sun, W. H. Chem. Sci. 2020, 11, 6766.
doi: 10.1039/D0SC02942D |
[86] |
Schieweck, B. G.; Jurling-Will, P.; Klankermayer, J. ACS Catal. 2020, 10, 3890.
doi: 10.1021/acscatal.9b04977 |
[87] |
Ribeiro, A. P. C.; L. Martins, M. D. R. S.; Pombeiro, A. J. L. Green Chem. 2017, 19, 4811.
doi: 10.1039/C7GC01993A |
[88] |
Lane, E. M.; Zhang, Y.; Hazari, N.; Bernskoetter, W. H. Organometallics 2019, 38, 3084.
doi: 10.1021/acs.organomet.9b00413 |
[89] |
(a) Gui, Y. Y.; Hu, N. F.; Chen, X. W.; Liao, L. L.; Ju, T.; Ye, J. H.; Zhang, Z.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2017, 139, 17011.
doi: 10.1021/jacs.7b10149 |
(b) Qiu, J.; Gao, S.; Li, C. P.; Zhang, L.; Wang, Z.; Wang, X. M.; Ding, K. L. Chem.-Eur. J. 2019, 25, 13874.
doi: 10.1002/chem.v25.61 |
|
(c) Chen, X. W.; Zhu, L.; Gui, Y. Y.; Jing, K.; Jiang, Y. X.; Bo, Z. Y.; Lan, Y.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2019, 141, 18825.
doi: 10.1021/jacs.9b09721 |
|
(d) Wang, M. Y.; Jin, X.; Wang, X. F.; Xia, S. M.; Wang, Y.; Huang, S. Y.; Li, Y.; He, L. N.; Ma, X. B. Angew. Chem., Int. Ed. 2021, 60, 3984.
doi: 10.1002/anie.v60.8 |
|
[90] |
(a) Bara, J. E.; Carlisle, T. K.; Gabriel, C. J.; Camper, D.; Finotello, A.; Gin, D. L.; Noble, R. D. Ind. Eng. Chem. Res. 2009, 48, 2739.
doi: 10.1021/ie8016237 |
(b) Wang, C. M.; Luo, H. M.; Jiang, D. E.; Li, H. R.; Dai, S. Angew. Chem., Int. Ed. 2010, 49, 5978.
doi: 10.1002/anie.201002641 |
|
[91] |
(a) Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.
doi: 10.1039/c3gc41265b |
(b) Yang, Z. Z.; He, L. N.; Gao, J.; Liu, A. H.; Yu, B. Energy Environ. Sci. 2012, 5, 6602.
doi: 10.1039/c2ee02774g |
|
(c) Kar, S.; Goeppert, A.; Surya Prakash, G. K. Acc. Chem. Res. 2019, 52, 2892.
doi: 10.1021/acs.accounts.9b00324 |
|
[92] |
(a) Yang, Z. Z.; Zhao, Y. N.; He, L. N. RSC Adv. 2011, 1, 545.
doi: 10.1039/c1ra00307k |
(b) Yang, Z. Z.; He, L. N.; Zhao, Y. N.; Li, B.; Yu, B. Energy Environ. Sci. 2011, 4, 3971.
doi: 10.1039/c1ee02156g |
|
[93] |
(a) Su, J.; Lu, M.; Lin, H. Green Chem. 2015, 17, 2769.
doi: 10.1039/C5GC00397K pmid: 26335851 |
(b) Moret, S.; Dyson, P. J.; Laurenczy, G. Nat. Commun. 2014, 5, 4017.
doi: 10.1038/ncomms5017 pmid: 26335851 |
|
(c) Schuchmann, K.; Müller, V. Science 2013, 342, 1382.
doi: 10.1126/science.1244758 pmid: 26335851 |
|
(d) Wang, W. H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115, 12936.
doi: 10.1021/acs.chemrev.5b00197 pmid: 26335851 |
|
(e) Zhao, T.; Hu, X.; Wu, Y.; Zhang, Z. Angew. Chem., Int. Ed. 2019, 58, 722.
doi: 10.1002/anie.201809634 pmid: 26335851 |
|
(f) Scott, M.; Blas Molinos, B.; Westhues, C.; Franciò, G.; Leitner, W. ChemSusChem 2017, 10, 1085.
doi: 10.1002/cssc.201601814 pmid: 26335851 |
|
[94] |
Li, Y. N.; He, L. N.; Liu, A. H.; Lang, X. D.; Yang, Z. Z.; Yu, B.; Luan, C. R. Green Chem. 2013, 15, 2825.
doi: 10.1039/c3gc41265b |
[95] |
Zhang, S.; Li, Y. N.; Zhang, Y. W.; He, L. N.; Yu, B.; Song, Q. W.; Lang, X. D. ChemSusChem 2014, 7, 1484.
doi: 10.1002/cssc.201400133 |
[96] |
Li, Y.-N.; He, L.-N.; Lang, X.-D.; Liu, X.-F.; Zhang, S. RSC Adv. 2014, 4, 49995.
doi: 10.1039/C4RA08740B |
[97] |
McNamara, N. D.; Hicks, J. C. ChemSusChem 2014, 7, 1114.
doi: 10.1002/cssc.201301231 |
[98] |
Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Surya Prakash, G. K. Green Chem. 2016, 18, 5831.
doi: 10.1039/C6GC01165A |
[99] |
Guan, C.; Pan, Y.; Ang, E. P. L.; Hu, J.; Yao, C.; Huang, M. H.; Li, H.; Lai, Z.; Huang, K. W. Green Chem. 2018, 20, 4201.
doi: 10.1039/C8GC02186D |
[100] |
Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Surya Prakash, G. K. J. Am. Chem. Soc. 2016, 138, 778.
doi: 10.1021/jacs.5b12354 pmid: 26713663 |
[101] |
(a) Boddien, A.; Gärtner, F.; Federsel, C.; Sponholz, P.; Mellmann, D.; Jackstell, R.; Junge, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 6411.
doi: 10.1002/anie.201101995 pmid: 25824142 |
(b) Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2011, 50, 9948.
doi: 10.1002/anie.v50.42 pmid: 25824142 |
|
(c) Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J. P.; May, R. B.; Surya Prakash, G. K.; Olah, G. A. ChemSusChem 2015, 8, 1442.
doi: 10.1002/cssc.201403458 pmid: 25824142 |
|
(d) Dai, Z.; Luo, Q.; Cong, H.; Zhang, J.; Peng, T. New J. Chem. 2017, 41, 3055.
doi: 10.1039/C6NJ03855G pmid: 25824142 |
|
(e) Bertini, F.; Mellone, I.; Ienco, A.; Peruzzini, M.; Gonsalvi, L. ACS Catal. 2015, 5, 1254.
doi: 10.1021/cs501998t pmid: 25824142 |
|
[102] |
Kar, S.; Goeppert, A.; Galvan, V.; Chowdhury, R.; Olah, J.; Surya Prakash, G. K. J. Am. Chem. Soc. 2018, 140, 16873.
doi: 10.1021/jacs.8b09325 |
[103] |
Li, Y. N.; Liu, X. F.; He, L. N. J. CO2 Util. 2019, 29, 74.
|
[104] |
Han, Z. B.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. L. Angew. Chem., Int. Ed. 2012, 51, 13041.
doi: 10.1002/anie.201207781 |
[105] |
(a) The omega process (the only advanced mono EG process) is a process in which ethylene oxide is reacted with CO2 to first afford ethylene carbonate, followed by catalytic hydrolysis of the carbonate to selectively produce mono EG, which is an important component of automotive antifreeze and a key precursor to polyester, with global demands of over 25 million metric tons in 2010. The prices of ethylene epoxide, CO2, and EG are 1600, 50, and 1300 US$/metric ton, respectively.
|
(b) Ma, J.; Sun, N.; Zhang, X.; Zhao, N.; Mao, F.; Wei, W.; Sun, Y. Catal. Today 2009, 148, 221.
doi: 10.1016/j.cattod.2009.08.015 |
|
[106] |
Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.
doi: 10.1038/nchem.1089 |
[107] |
Kar, S.; Goeppert, A.; Kothandaraman, J.; Prakash, G. K. S. ACS Catal. 2017, 7, 6347.
doi: 10.1021/acscatal.7b02066 |
[108] |
Schneidewind, J.; Adam, R.; Baumann, W.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. 2017, 56, 1890.
doi: 10.1002/anie.201609077 |
[1] | Xu Liao, Zeyu Wang, Wufei Tang, Jinqing Lin. Progress in Porous Organic Polymer for Chemical Fixation of Carnbon Dioxide [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2699-2710. |
[2] | Zhangtao Zhou, Yang Wang, Bingxin Cheng, Weiping Ye. [RuCl(p-cymene)-(S)-BINAP]Cl Catalyzed Asymmetric Preparation of trans-3-Amino-bicyclo[2.2.2]octane-2-carboxylic Acid Ethyl Ester [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2961-2967. |
[3] | Yangyang Chu, Zhaobin Han, Kuiling Ding. Progresses in the Application of Kinetic Resolution in Transition Metal Catalyzed Asymmetric (Transfer) Hydrogenation [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1934-1951. |
[4] | Zijie Song, Jun Liu, Ying Bai, Jiayun Li, Jiajian Peng. Progress in Catalysis Transformation of Carbon Dioxide through Hydrosilylation [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2068-2080. |
[5] | Shengjie Jiang, Yang Wang, Xin Xu. Rare-Earth Metal Complexes-Catalyzed Dehydropolymerization of Methylamine-Boranes [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1786-1791. |
[6] | Shuang Liu, Lianghua Zou, Xiaoming Wang. Advance of Dehydrogenation and Transfer Hydrogenation of Ammonia-Borane Catalyzed by Homogeneous Cobalt Complexes [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1713-1725. |
[7] | Yongzhou Pan, Xiujin Meng, Yingchun Wang, Muxue He. Recent Progress in Electrochemical Fixation of CO2 to Construct Carboxylic Acid Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1416-1434. |
[8] | Guijie Liu, Zhengqiang Fu, Fei Chen, Caixia Xu, Min Li, Ning Liu. N-Heterocyclic Carbene-Pyridine Manganese Complex/ Tetrabutylammonium Iodide Catalyzed Synthesis of Cyclic Carbonate from CO2 and Epoxide [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 629-635. |
[9] | Peifeng Su, Jinyu Ni, Zhuofeng Ke. Recent Advances in Homogeneous Catalytic Systems for CO2 Hydrosilylation and Related Transformations [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3526-3543. |
[10] | Yan Huang, Qian Zhang, Lewu Zhan, Jing Hou, Bindong Li. Hydrocarboxylation of Alkenes with Formate Salts via Photocatalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2568-2573. |
[11] | Yong Xu, Yongxing Zhang, Jia Hu, Cheng Chen, Ye Yuan, Francis Verpoort. Synthesis of β-Oxopropylcarbamates Catalyzed by ZnO/Ionic Liquids under Atmospheric CO2 [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2542-2550. |
[12] | Fei Chen, Sheng Tao, Ning Liu, Bin Dai. CNN-Type Binuclear Cu(I) Complexes Catalyzed Direct Carboxylation via the Fixation of CO2 at Room Temperature [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2471-2480. |
[13] | Tingshu Cao, Xiangyang Wei, Min Luo, Yifei Wang, Zijun Pan, Cheng Xu, Guodong Yin. PhI(OAc)2-Promoted Dehydrogenation Oxidation for the Synthesis of 2-(Aryl/alkylthio)phenols and 10H-Phenothiazines [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2079-2088. |
[14] | Tongli Zhang, Jun Yan, Jingli He, Xuezhen Kou, Jiefeng Shen, Delong Liu, Wanbin Zhang. Synthesis of Chiral 5-Aryl-2-oxazolidinones via an Ir-BiphPHOX Catalyzed Enantioselective Hydrogenation [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1747-1758. |
[15] | Xinyao Wang, Qingqing Zhang, Shuyang Liu, Min Li, Haifang Li, Chunying Duan, Yunhe Jin. Visible Light-Induced Metal-Free Benzylation of Quinones via Cross Dehydrogenation Coupling Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1443-1452. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||