Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (7): 2229-2235.DOI: 10.6023/cjoc202202007 Previous Articles Next Articles
ARTICLES
李海琼, 尹梦云, 谢芬芬, 张正兵*(), 韩盼*(), 敬林海*()
收稿日期:
2022-02-06
修回日期:
2022-03-11
发布日期:
2022-08-09
通讯作者:
张正兵, 韩盼, 敬林海
作者简介:
基金资助:
Haiqiong Li, Mengyun Yin, Fenfen Xie, Zhengbing Zhang(), Pan Han(), Linhai Jing()
Received:
2022-02-06
Revised:
2022-03-11
Published:
2022-08-09
Contact:
Zhengbing Zhang, Pan Han, Linhai Jing
About author:
Supported by:
Share
Haiqiong Li, Mengyun Yin, Fenfen Xie, Zhengbing Zhang, Pan Han, Linhai Jing. Synthesis of Nitrile via Electrochemical Appel Reaction[J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2229-2235.
Entry | Electrolyte | Solvent | Base | Yield b/% |
---|---|---|---|---|
1 | nBu4NPF6 | CH3CN | NaHCO3 | 67 |
2c | nBu4NPF6 | CH3CN | NaHCO3 | 33 |
3d | nBu4NPF6 | CH3CN | NaHCO3 | 26 |
4e | nBu4NPF6 | CH3CN | NaHCO3 | 48 |
5 | nBu4NBF4 | CH3CN | NaHCO3 | 41 |
6 | Me4NBF4 | CH3CN | NaHCO3 | 55 |
7 | nBu4NClO4 | CH3CN | NaHCO3 | 60 |
8 | LiClO4 | CH3CN | NaHCO3 | 11 |
9 | TBAB | CH3CN | NaHCO3 | 85 (83)f |
10 | TBAI | CH3CN | NaHCO3 | 60 |
11 | TBAB | CH3CN | Na2CO3 | 70 |
12 | TBAB | CH3CN | K3PO4 | 46 |
13 | TBAB | CH3CN | Cs2CO3 | 69 |
14 | TBAB | CH3CN | Et3N | 44 |
15 | TBAB | THF | NaHCO3 | 0 |
16 | TBAB | DCM | NaHCO3 | 48 |
17 | TBAB | DMF | NaHCO3 | 15 |
18 | TBAB | Dioxane | NaHCO3 | 0 |
19g | TBAB | CH3CN | NaHCO3 | 64 |
20h | TBAB | CH3CN | NaHCO3 | 57 |
21i | TBAB | CH3CN | NaHCO3 | 50 |
22j | TBAB | CH3CN | NaHCO3 | 0 |
Entry | Electrolyte | Solvent | Base | Yield b/% |
---|---|---|---|---|
1 | nBu4NPF6 | CH3CN | NaHCO3 | 67 |
2c | nBu4NPF6 | CH3CN | NaHCO3 | 33 |
3d | nBu4NPF6 | CH3CN | NaHCO3 | 26 |
4e | nBu4NPF6 | CH3CN | NaHCO3 | 48 |
5 | nBu4NBF4 | CH3CN | NaHCO3 | 41 |
6 | Me4NBF4 | CH3CN | NaHCO3 | 55 |
7 | nBu4NClO4 | CH3CN | NaHCO3 | 60 |
8 | LiClO4 | CH3CN | NaHCO3 | 11 |
9 | TBAB | CH3CN | NaHCO3 | 85 (83)f |
10 | TBAI | CH3CN | NaHCO3 | 60 |
11 | TBAB | CH3CN | Na2CO3 | 70 |
12 | TBAB | CH3CN | K3PO4 | 46 |
13 | TBAB | CH3CN | Cs2CO3 | 69 |
14 | TBAB | CH3CN | Et3N | 44 |
15 | TBAB | THF | NaHCO3 | 0 |
16 | TBAB | DCM | NaHCO3 | 48 |
17 | TBAB | DMF | NaHCO3 | 15 |
18 | TBAB | Dioxane | NaHCO3 | 0 |
19g | TBAB | CH3CN | NaHCO3 | 64 |
20h | TBAB | CH3CN | NaHCO3 | 57 |
21i | TBAB | CH3CN | NaHCO3 | 50 |
22j | TBAB | CH3CN | NaHCO3 | 0 |
[1] |
(a) Dworczak, R.; Fabian, W. M. F.; Biza, P.; Weikmann, M.; Junek, H. Dyes Pigm. 1995, 28, 297.
doi: 10.1016/0143-7208(95)00022-8 |
(b) Dworczak, R.; Fabian, W. M. F.; Pawar, B. N.; Junek, H. Dyes Pigm. 1995, 29, 65.
doi: 10.1016/0143-7208(95)00028-E |
|
(c) Pearce, E. M.; Weil, E. D.; Barinov, V. Y. Fire Smart Polymers (Fire and Polymers), American Chemical Society, 2001, pp. 37-48.
|
|
(d) Amr, M. A.; Mohamed, H. E.; Mohamed, S. E.; Hesham, R. E.-S.; Ismail, A. A. Curr. Org. Synth. 2018, 15, 487.
doi: 10.2174/1570179415666180403120140 |
|
[2] |
Fatiadi, A. J. In Preparation and Synthetic Applications of Cyano Compounds, Eds.: Patai, S.; Rappaport, Z., Wiley, New York, 1983.
|
[3] |
(a) Iyengar, B. S.; Dorr, R. T.; Remers, W. A. J. Med. Chem. 2004, 47, 218.
doi: 10.1021/jm030225v pmid: 17228871 |
(b) Romero, M.; Renard, P.; Caignard, D.-H.; Atassi, G.; Solans, X.; Constans, P.; Bailly, C.; Pujol, M. D. J. Med. Chem. 2007, 50, 294.
pmid: 17228871 |
|
[4] |
Pascual, E.; Sivera, F.; Yasothan, U.; Kirkpatrick, P. Nat. Rev. Drug Discov. 2009, 8, 191.
doi: 10.1038/nrd2831 pmid: 19247302 |
[5] |
Patat, A.; Paty, I.; Hindmarch, I. Hum. Psychopharmacol. 2001, 16, 369.
doi: 10.1002/hup.310 |
[6] |
(a) Sica, D. A.; Prisant, L. M. J. Clin. Hypertens. (Shelton, CT, U. S.) 2007, 9, 1.
pmid: 19900016 |
(b) Cooper-DeHoff, R. M.; Handberg, E. M.; Mancia, G.; Zhou, Q.; Champion, A.; Legler, U. F.; Pepine, C. J. Expert Rev. Cardiovasc. Ther. 2009, 7, 1329.
doi: 10.1586/erc.09.102 pmid: 19900016 |
|
[7] |
Noble, S.; McTavish, D. Drugs 1995, 50, 1032.
pmid: 8612470 |
[8] |
(a) Shu, Z.; Ye, Y.; Deng, Y.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2013, 52, 10573.
doi: 10.1002/anie.201305731 |
(b) Liu, J.; Zheng, H.-X.; Yao, C.-Z.; Sun, B.-F.; Kang, Y.-B. J. Am. Chem. Soc. 2016, 138, 3294.
doi: 10.1021/jacs.6b00180 |
|
(c) Ge, J.-J.; Yao, C.-Z.; Wang, M.-M.; Zheng, H.-X.; Kang, Y.-B.; Li, Y. Org. Lett. 2016, 18, 228.
doi: 10.1021/acs.orglett.5b03367 |
|
(d) Yu, L.; Li, H.; Zhang, X.; Ye, J.; Liu, J.; Xu, Q.; Lautens, M. Org. Lett. 2014, 16, 1346.
doi: 10.1021/ol500075h |
|
(e) Zhuang, Y.-J.; Liu, J.; Kang, Y.-B. Tetrahedron Lett. 2016, 57, 5700.
doi: 10.1016/j.tetlet.2016.11.034 |
|
[9] |
(a) Zhou, S.; Addis, D.; Das, S.; Junge, K.; Beller, M. Chem. Commun. 2009, 4883.
pmid: 29320204 |
(b) Shipilovskikh, S. A.; Vaganov, V. Y.; Denisova, E. I.; Rubtsov, A. E.; Malkov, A. V. Org. Lett. 2018, 20, 728.
doi: 10.1021/acs.orglett.7b03862 pmid: 29320204 |
|
[10] |
(a) Zhou, W.; Zhang, L.; Jiao, N. Angew. Chem., Int. Ed. 2009, 48, 7094.
doi: 10.1002/anie.200903838 |
(b) Tseng, K.-N. T.; Rizzi, A. M.; Szymczak, N. K. J. Am. Chem. Soc. 2013, 135, 16352.
doi: 10.1021/ja409223a |
|
(c) Guo, S.; Wan, G.; Sun, S.; Jiang, Y.; Yu, J.-T.; Cheng, J. Chem. Commun. 2015, 51, 5085.
doi: 10.1039/C5CC01024A |
|
[11] |
(a) Anderson, B. A.; Bell, E. C.; Ginah, F. O.; Harn, N. K.; Pagh, L. M.; Wepsiec, J. P. J. Org. Chem. 1998, 63, 8224.
doi: 10.1021/jo9808674 |
(b) Zanon, J.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 2890.
doi: 10.1021/ja0299708 |
|
(c) Cristau, H.-J.; Ouali, A.; Spindler, J.-F.; Taillefer, M. Chem.-Eur. J. 2005, 11, 2483.
doi: 10.1002/chem.200400979 |
|
(d) Pan, S.; Wu, F.; Yu, R.; Chen, W. J. Org. Chem. 2016, 81, 1558.
doi: 10.1021/acs.joc.5b02710 |
|
(e) Yan, G.; Zhang, Y.; Wang, J. Adv. Synth. Catal. 2017, 359, 4068.
doi: 10.1002/adsc.201700875 |
|
[12] |
(a) Fang, C.; Li, M.; Hu, X.; Mo, W.; Hu, B.; Sun, N.; Jin, L.; Shen, Z. RSC Adv. 2017, 7, 1484.
doi: 10.1039/C6RA26435B pmid: 33795972 |
(b) Murugesan, K.; Senthamarai, T.; Sohail, M.; Sharif, M.; Kalevaru, N. V.; Jagadeesh, R. V. Green Chem. 2018, 20, 266.
doi: 10.1039/C7GC02627G pmid: 33795972 |
|
(c) Chen, H.; Sun, S.; Xi, H.; Hu, K.; Zhang, N.; Qu, J.; Zhou, Y. Tetrahedron Lett. 2019, 60, 1434.
doi: 10.1016/j.tetlet.2019.04.043 pmid: 33795972 |
|
(d) Zhan, W.; Tong, M.; Ji, L.; Zhang, H.; Ge, Z.; Wang, X.; Li, R.. Chin. Chem. Lett. 2019, 30, 973.
doi: 10.1016/j.cclet.2019.01.006 pmid: 33795972 |
|
(e) Mudshinge, S. R.; Potnis, C. S.; Xu, B.; Hammond, G. B. Green Chem. 2020, 22, 4161.
doi: 10.1039/d0gc00757a pmid: 33795972 |
|
(f) Hua, M.; Song, J.; Huang, X.; Liu, H.; Fan, H.; Wang, W.; He, Z.; Liu, Z.; Han, B. Angew. Chem., Int. Ed. 2021, 60, 21479.
doi: 10.1002/anie.202107996 pmid: 33795972 |
|
[13] |
(a) Xu, J.-H.; Jiang, Q.; Guo, C.-C. J. Org. Chem. 2013, 78, 11881.
doi: 10.1021/jo401919h |
(b) Preger, Y.; Root, T. W.; Stahl, S. S. ACS Omega 2018, 3, 6091.
doi: 10.1021/acsomega.8b00911 |
|
(c) Vanoye, L.; Hammoud, A.; Gérard, H.; Barnes, A.; Philippe, R.; Fongarland, P.; de Bellefon, C.; Favre-Réguillon, A. ACS Catal. 2019, 9, 9705.
doi: 10.1021/acscatal.9b02779 |
|
(d) Murata, Y.; Iwasa, H.; Matsumura, M.; Yasuike, S. Chem. Pharm. Bull. 2020, 68, 679.
doi: 10.1248/cpb.c20-00228 |
|
(e) Takahashi, Y.; Tsuji, H.; Kawatsura, M. J. Org. Chem. 2020, 85, 2654.
doi: 10.1021/acs.joc.9b02705 |
|
(f) Lu, D.; Cui, J.; Yang, S.; Gong, Y. ACS Catal. 2021, 11, 4288.
doi: 10.1021/acscatal.1c00557 |
|
(g) Xiao, J.; Guo, F.; Li, Y.; Li, F.; Li, Q.; Tang, Z.-L. J. Org. Chem. 2021, 86, 2028.
doi: 10.1021/acs.joc.0c02794 |
|
[14] |
(a) Li, Y.-T.; Liao, B.-S.; Chen, H.-P.; Liu, S.-T. Synthesis 2011, 2639.
pmid: 30240220 |
(b) Ma, X.-Y.; He, Y.; Lu, T.-T.; Lu, M. Tetrahedron 2013, 69, 2560.
doi: 10.1016/j.tet.2013.01.059 pmid: 30240220 |
|
(c) Ghosh, P.; Pariyar, G. C.; Saha, B.; Subba, R. Synth. Commun. 2016, 46, 685.
doi: 10.1080/00397911.2016.1167910 pmid: 30240220 |
|
(d) Hyodo, K.; Kitagawa, S.; Yamazaki, M.; Uchida, K. Chem. Asian J. 2016, 11, 1348.
doi: 10.1002/asia.201600085 pmid: 30240220 |
|
(e) Rapeyko, A.; Climent, M. J.; Corma, A.; Concepción, P.; Iborra, S. ACS Catal. 2016, 6, 4564.
doi: 10.1021/acscatal.6b00272 pmid: 30240220 |
|
(f) Sun, D.; Kitamura, E.; Yamada, Y.; Sato, S. Green Chem. 2016, 18, 3389.
doi: 10.1039/C6GC00384B pmid: 30240220 |
|
(g) Ding, R.; Liu, Y.; Han, M.; Jiao, W.; Li, J.; Tian, H.; Sun, B. J. Org. Chem. 2018, 83, 12939.
doi: 10.1021/acs.joc.8b02190 pmid: 30240220 |
|
(h) Zhang, D.; Huang, Y.; Zhang, E.; Yi, R.; Chen, C.; Yu, L.; Xu, Q. Adv. Synth. Catal. 2018, 360, 784.
doi: 10.1002/adsc.201701154 pmid: 30240220 |
|
(i) Ma, X.; Liu, D.; Chen, Z. Synth. Commun. 2021, 51, 3261.
doi: 10.1080/00397911.2021.1943752 pmid: 30240220 |
|
[15] |
(a) Sperry, J. B.; Wright, D. L. Chem. Soc. Rev. 2006, 35, 605.
doi: 10.1039/b512308a pmid: 29498518 |
(b) Jutand, A. Chem. Rev. 2008, 108, 2300.
doi: 10.1021/cr068072h pmid: 29498518 |
|
(c) Yoshida, J.-I.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265.
doi: 10.1021/cr0680843 pmid: 29498518 |
|
(d) Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.
doi: 10.1039/c3cs60464k pmid: 29498518 |
|
(e) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 pmid: 29498518 |
|
(f) Ma, C.; Fang, P.; Mei, T.-S. ACS Catal. 2018, 8, 7179.
doi: 10.1021/acscatal.8b01697 pmid: 29498518 |
|
(g) Moeller, K. D. Chem. Rev. 2018, 118, 4817.
doi: 10.1021/acs.chemrev.7b00656 pmid: 29498518 |
|
(h) Yoshida, J.-I.; Shimizu, A.; Hayashi, R. Chem. Rev. 2018, 118, 4702.
doi: 10.1021/acs.chemrev.7b00475 pmid: 29498518 |
|
(i) Marken, F.; Wadhawan, J. D. Acc. Chem. Res. 2019, 52, 3325.
doi: 10.1021/acs.accounts.9b00480 pmid: 29498518 |
|
(j) Xiong, P.; Xu, H.-C. Acc. Chem. Res. 2019, 52, 3339.
doi: 10.1021/acs.accounts.9b00472 pmid: 29498518 |
|
(k) Yuan, Y.; Lei, A. Acc. Chem. Res. 2019, 52, 3309.
doi: 10.1021/acs.accounts.9b00512 pmid: 29498518 |
|
(l) Jiao, K.-J.; Xing, Y.-K.; Yang, Q.-L.; Qiu, H.; Mei, T.-S. Acc. Chem. Res. 2020, 53, 300.
doi: 10.1021/acs.accounts.9b00603 pmid: 29498518 |
|
(m) Siu, J. C.; Fu, N.; Lin, S. Acc. Chem. Res. 2020, 53, 547.
doi: 10.1021/acs.accounts.9b00529 pmid: 29498518 |
|
[16] |
(a) Mo, Z.-Y.; Swaroop, T. R.; Tong, W.; Zhang, Y.-Z.; Tang, H.-T.; Pan, Y.-M.; Sun, H.-B.; Chen, Z.-F. Green Chem. 2018, 20, 4428.
doi: 10.1039/C8GC02143K |
(b) Zhang, Y.-Z.; Mo, Z.-Y.; Wang, H.-S.; Wen, X.-A.; Tang, H.-T.; Pan, Y.-M. Green Chem. 2019, 21, 3807.
doi: 10.1039/C9GC01201J |
|
(c) Wang, X.-Y.; Zhong, Y.-F.; Mo, Z.-Y.; Wu, S.-H.; Xu, Y.-L.; Tang, H.-T.; Pan, Y.-M. Adv. Synth. Catal. 2021, 363, 208.
doi: 10.1002/adsc.202001192 |
|
(d) Wu, Y.; Chen, J.-Y.; Liao, H.-R.; Shu, X.-R.; Duan, L.-L.; Yang, X.-F.; He, W.-M. Green Synth. Catal. 2021, 2, 233.
|
|
(e) Yang, Z.; Yu, Y.; Lai, L.; Zhou, L.; Ye, K.; Chen, F.-E. Green Synth. Catal. 2021, 2, 19.
|
|
(f) Zhang, S.; Ye, X.; Wojtas, L.; Hao, W.; Shi, X. Green Synth. Catal. 2021, 2, 82.
|
|
[17] |
Libendi, S. S.; Demizu, Y.; Onomura, O. Org. Biomol. Chem. 2009, 7, 351.
doi: 10.1039/B816598J |
[18] |
(a) Cui, T.; Zhan, Y.; Dai, C.; Lin, J.; Liu, P.; Sun, P. J. Org. Chem. 2021, 86, 15897.
doi: 10.1021/acs.joc.0c03026 |
(b) Gao, J.; Weng, X.; Ma, C.; Xu, X.; Fang, P.; Mei, T. Chin. J. Org. Chem. 2021, 41, 3223. (in Chinese)
doi: 10.6023/cjoc202103049 |
|
( 高君青, 翁信军, 马聪, 徐学涛, 方萍, 梅天胜, 有机化学, 2021, 41, 3223.)
doi: 10.6023/cjoc202103049 |
|
[19] |
Dai, J.-J.; Huang, Y.-B.; Fang, C.; Guo, Q.-X.; Fu, Y. ChemSusChem 2012, 5, 617.
doi: 10.1002/cssc.201100776 |
[20] |
Ye, J.-Q.; Zhang, Z.-L.; Zha, Z.-G.; Wang, Z.-Y. Chin. Chem. Lett. 2014, 25, 1112.
doi: 10.1016/j.cclet.2014.04.024 |
[21] |
Qu, Q.; Gao, X.; Gao, J.; Yuan, G. Sci. China Chem. 2015, 58, 747.
doi: 10.1007/s11426-015-5331-z |
[22] |
Shono, T.; Matsumura, Y.; Tsubata, K.; Kamada, T.; Kishi, K.. J. Org. Chem. 1989, 54, 2249.
doi: 10.1021/jo00270a044 |
[23] |
Hartmer, M. F.; Waldvogel, S. R. Chem. Commun. 2015, 51, 16346.
doi: 10.1039/C5CC06437F |
[24] |
(a) Ohmori, H.; Nakai, S.; Sekiguchi, M.; Masui, M. Chem. Pharm. Bull. 1980, 28, 910.
doi: 10.1248/cpb.28.910 |
(b) Xu, Z.; Zheng, Y.; Wang, Z.; Shao, X.; Tian, L.; Wang, Y. Chem. Commun. 2019, 55, 15089.
doi: 10.1039/C9CC08622F |
|
[25] |
(a) de Andrade, V. S. C.; de Mattos, M. C. S. Curr. Org. Synth. 2015, 12, 309.
doi: 10.2174/1570179412666150305231358 |
(b) Li, Z.; Sun, W.; Wang, X.; Li, L.; Zhang, Y.; Li, C. J. Am. Chem. Soc. 2021, 143, 3536.
doi: 10.1021/jacs.0c13093 |
|
[26] |
(a) Ban, Y.-L.; Dai, J.-L.; Jin, X.-L.; Zhang, Q.-B.; Liu, Q. Chem. Commun. 2019, 55, 9701.
doi: 10.1039/C9CC05354A |
(b) Schäfer, R. J. B.; Monaco, M. R.; Li, M.; Tirla, A.; Rivera- Fuentes, P.; Wennemers, H. J. Am. Chem. Soc. 2019, 141, 18644.
doi: 10.1021/jacs.9b07632 |
[1] | Dandan Sui, Nannan Cen, Ruoqu Gong, Yang Chen, Wenbo Chen. Supporting-Electrolyte-Free Electrochemical Synthesis of Trifluoromethylated Oxindoles in Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3239-3245. |
[2] | Junying Zhang, Xiaojing Zhao, Ganpeng Li, Yonghui He. Electrochemical Synthesis of Masked Organoboronic Acids RB(dan) at Room Temperature [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1815-1823. |
[3] | Yongzhou Pan, Xiujin Meng, Yingchun Wang, Muxue He. Recent Progress in Electrochemical Fixation of CO2 to Construct Carboxylic Acid Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1416-1434. |
[4] | Jiawei Huang, Xiaoman Li, Liang Xu, Yu Wei. Electrochemical Decarboxylation Coupling of α-Keto Acids with Thiophenols: A New Avenue for the Synthesis of Thioesters [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 756-762. |
[5] | Zhengjiang Fu, Zhenjiang Yang, Li Sun, Jian Yin, Xuezheng Yi, Hu Cai, Aiwen Lei. Electrochemical Synthesis of Aryl Sulfonates from Sodium Sulfinates and Phenols under Metal-Free Conditions [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 600-606. |
[6] | Xiaolong Guo, Yuxian Wang, Zhiqiang Zhao, Qing Wang, Jian Zuo, Luyao Wang. Electrochemical Oxidative C—H Trifluoromethylation of Quinoxalin-2(1H)-ones and the Performance Evaluation via Electro-descriptors [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 641-649. |
[7] | Hongxia Li, Peng Chen, Zhilin Wu, Yuhan Lu, Junmei Peng, Jingyang Chen, Weimin He. Electrochemical Oxidative Cross-Dehydrogenative Coupling of Five-Membered Aromatic Heterocycles with NH4SCN [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3398-3404. |
[8] | Zhiheng Zhao, Ming Li, Yaqin Zhou, Yonghui He, Lizhu Zhang, Ganpeng Li, Lijun Gu. Synthesis of 1,2,4-Triazoles via the Electrochemical Oxidative [3+2] Annulation [J]. Chinese Journal of Organic Chemistry, 2021, 41(6): 2476-2484. |
[9] | Yaqin Zhou, Zhiheng Zhao, Liang Zeng, Ming Li, Yonghui He, Lijun Gu. Recent Advance in Organic Electrochemical Synthesis of Nitrogenous Heterocyclic Compounds Involving Haloids as Mediators [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 1072-1080. |
[10] | Dandan Li, Xiaochen Wang, Shanshan Li, Chenyu Fu, Qianqian Li, Dongtao Xu, Yingying Ma. Recent Advances in Electrochemical C(3)—H Functionalization of Quinoxalin-2(1H)-ones [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4610-4622. |
[11] | Wenyi Li, Yinheng Tang, Wentao Ouyang, Yuhan Lu, Jinyang Chen, Weimin He. Electrochemical Selenylation of N-Unprotected Anilines for Consturcing 4-(Organylselanyl)anilines [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4766-4772. |
[12] | Hongyu Wu, Xianyong Yu, Zhong Cao. Electrochemical Multicomponent Synthesis of α-Ketoamides from α-Oxocarboxylic Acids, Isocyanides and Water [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4712-4717. |
[13] | Wei Cai, You Huang. Advances in Organophosphorus Redox Catalysis [J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3903-3913. |
[14] | Zhang Huaiyuan, Tang Rongping, Shi Xingli, Xie Lin, Wu Jiawei. Recent Advances in Organic Electrochemical Synthesis and Application of Hypervalent Iodine Reagents [J]. Chin. J. Org. Chem., 2019, 39(7): 1837-1845. |
[15] | Wu Yaxing, Xi Yachao, Zhao Ming, Wang Siyi. Progress in Electrochemical C—H Functionalizations of Aromatic Compounds [J]. Chin. J. Org. Chem., 2018, 38(10): 2590-2605. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||