Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (10): 3015-3032.DOI: 10.6023/cjoc202208032 Previous Articles Next Articles
Special Issue: 不对称催化专辑
ACCOUNT
收稿日期:
2022-08-24
修回日期:
2022-09-18
发布日期:
2022-11-02
通讯作者:
陈志敏
作者简介:
朱登, 2019年在浙江工业大学获得学士学位, 现为上海交通大学博士研究生, 导师为陈志敏副教授, 主要研究方向为手性含硫化合物的高效合成. |
陈志敏, 博士, 长聘教轨副教授, 上海市高校特聘教授(东方学者). 2009年在福州大学获学士学位, 2014年在兰州大学获有机化学博士学位, 导师涂永强教授. 2014~2017年在上海交通大学(导师: 涂永强教授)从事博士后研究, 期间2015~2017在美国犹他大学(导师: Matthew S. Sigman教授)从事博士后研究. 2017年底加入上海交通大学化学化工学院, 开展独立研究, 主要围绕手性硫化学和硒化学开展研究工作, 通过发展新催化剂、新试剂、新策略实现各种手性硫化合物、硒化合物的高效合成. |
基金资助:
Deng Zhua,b, Zhi-Min Chena,b()
Received:
2022-08-24
Revised:
2022-09-18
Published:
2022-11-02
Contact:
Zhi-Min Chen
Supported by:
Share
Deng Zhu, Zhi-Min Chen. Application of Chiral Lewis Base/Brønsted Acid Synergistic Catalysis Strategy in Enantioselective Synthesis of Organic Sulfides[J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3015-3032.
Entry | Acid | X | Yield/% | ee/% | pKa (acid) |
---|---|---|---|---|---|
1 | acid-1a | 0.1 | 79 | 92 | |
2 | No acid | 0 | 67 | 0 | |
3 | acid-1 | 0.05 | 96 | 76 | |
4 | acid-1 | 0.2 | 76 | 87 | |
5 | acid-1 | 0.5 | 79 | 84 | |
6 | acid-1 | 1.0 | 59 | 82 | |
7 | acid-1 without C9 | 0.1 | 37 | 0 | |
8 | PTSA | 0.1 | 71 | 90 | -2.7 |
9 | MSA | 0.1 | 90 | 79 | |
10 | TfOH | 0.1 | 70 | 49 | |
11 | TFA | 0.1 | 73 | 18 | -0.26 |
12 | (PhO)2P(O)OH | 0.1 | 61 | 20 | 1.9 |
13 | Benzoic acid | 0.1 | 50 | 0 | 4.21 |
14 | Acetic acid | 0.1 | 75 | 0 | 4.8 |
15 | Saccharin | 0.1 | 56 | 0 | 2.2 |
Entry | Acid | X | Yield/% | ee/% | pKa (acid) |
---|---|---|---|---|---|
1 | acid-1a | 0.1 | 79 | 92 | |
2 | No acid | 0 | 67 | 0 | |
3 | acid-1 | 0.05 | 96 | 76 | |
4 | acid-1 | 0.2 | 76 | 87 | |
5 | acid-1 | 0.5 | 79 | 84 | |
6 | acid-1 | 1.0 | 59 | 82 | |
7 | acid-1 without C9 | 0.1 | 37 | 0 | |
8 | PTSA | 0.1 | 71 | 90 | -2.7 |
9 | MSA | 0.1 | 90 | 79 | |
10 | TfOH | 0.1 | 70 | 49 | |
11 | TFA | 0.1 | 73 | 18 | -0.26 |
12 | (PhO)2P(O)OH | 0.1 | 61 | 20 | 1.9 |
13 | Benzoic acid | 0.1 | 50 | 0 | 4.21 |
14 | Acetic acid | 0.1 | 75 | 0 | 4.8 |
15 | Saccharin | 0.1 | 56 | 0 | 2.2 |
[1] |
(a) Masdeu-Bultó, A. M.; Diéguez, M.; Martin, E.; Gómez, M. Coord. Chem. Rev. 2003, 242, 159.
doi: 10.1016/S0010-8545(03)00106-1 |
(b) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
doi: 10.1021/ed1003806 |
|
(c) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
doi: 10.2174/1568026615666150915111741 |
|
(d) Otocka, S; Kwiatkowska, M.; Madalińska, L.; Kiełbasiński, P. Chem. Rev. 2017, 117, 4147.
doi: 10.1021/acs.chemrev.6b00517 |
|
(e) Scott, K. A.; Njardarson, J. T. Top. Curr. Chem. 2018, 376, 5.
|
|
[2] |
(a) Kondo, T.; Mitsudo, T.-A. Chem. Rev. 2000, 100, 3205.
pmid: 25144663 |
(b) Chauhan, P.; Mahajan, S.; Enders, D. Chem. Rev. 2014, 114, 8807.
doi: 10.1021/cr500235v pmid: 25144663 |
|
(c) Yu, J.-S.; Huang, H.-M.; Ding, P.-G.; Hu, X.-S.; Zhou, F.; Zhou, J. ACS Catal. 2016, 6, 5319.
doi: 10.1021/acscatal.6b01496 pmid: 25144663 |
|
(d) Matviitsuk, A.; Panger, J. L.; Denmark, S. E. Angew. Chem., Int. Ed. 2020, 59, 19796.
doi: 10.1002/anie.202005920 pmid: 25144663 |
|
(e) Liao, L.; Zhao, X. Acc. Chem. Res. 2022, 55, 2439.
doi: 10.1021/acs.accounts.2c00201 pmid: 25144663 |
|
(f) Liao, L.; Zhao, X. Acc. Chem. Res. 2022, 55, 2439.
doi: 10.1021/acs.accounts.2c00201 pmid: 25144663 |
|
[3] |
(a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem., nt. Ed. 2005, 44, 794.
pmid: 16366584 |
(b) Franzén, J.; Marigo, M.; Fielenbach, D.; Wabnitz, T. C.; Kjærsgaard, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 18296.
pmid: 16366584 |
|
(c) Zhao, G.-L.; Rios, R; Vesely, J.; Eriksson, L.; Córdova, A. Angew. Chem., nt. Ed. 2008, 47, 8468.
pmid: 16366584 |
|
(d) Liu, Y.; Sun, B.; Wang, B.; Wakem, M.; Deng, L. J. Am. Chem. Soc. 2009, 131, 418.
doi: 10.1021/ja8085092 pmid: 16366584 |
|
(e) Fang, L.; Lin, A.; Hu, H.; Zhu, C. Chem.-Eur. J. 2009, 15, 7039.
doi: 10.1002/chem.200901099 pmid: 16366584 |
|
(f) Hui, Y.; Jiang, J.; Wang, W.; Chen, W.; Cai, Y.; Lin, L.; Liu, X.; Feng, X. Angew. Chem., nt. Ed. 2010, 49, 4290.
pmid: 16366584 |
|
(g) Li, X.; Liu, C.; Xue, X.-S.; Cheng, J.-P. Org. Lett. 2012, 14, 4374.
doi: 10.1021/ol301833f pmid: 16366584 |
|
(h) Mizar, P.; Niebuhr, R.; Hutchings, M.; Farooq, U.; Wirth, T. Chem.-Eur. J. 2016, 22, 1614.
doi: 10.1002/chem.201504636 pmid: 16366584 |
|
(i) Kennemur, J. L.; Kortman, G. D.; Hull, K. L. J. Am. Chem. Soc. 2016, 138, 11914.
doi: 10.1021/jacs.6b07142 pmid: 16366584 |
|
(j) Formica, M.; Sorin, G.; Farley, A. J. M.; Díaz, J.; Paton, R. S.; Dixon, D. J. Chem. Sci. 2018, 9, 6969.
doi: 10.1039/C8SC01804A pmid: 16366584 |
|
(k) Yang, X.-H.; Davison, R. T.; Dong, V. M. J. Am. Chem. Soc. 2018, 140, 10443.
doi: 10.1021/jacs.8b06957 pmid: 16366584 |
|
(l) Yang, X.-H.; Davison, R.; Nie, S.-Z.; Cruz, F. A.; McGinnis, T. M.; Dong, V. M. J. Am. Chem. Soc. 2019, 141, 3006.
doi: 10.1021/jacs.8b11395 pmid: 16366584 |
|
[4] |
(a) Denmark, S. E.; Kuester, W. E.; Burk, M. T. Angew. Chem., nt. Ed. 2012, 51, 10938.
pmid: 24595745 |
(b) Cheng, Y. A.; Yu, W. Z.; Yeung, Y.-Y. Org. Biomol. Chem. 2014, 12, 2333.
doi: 10.1039/c3ob42335b pmid: 24595745 |
|
(c) Sakakura, A.; Ishihara, K. Chem. Rec. 2015, 15, 728.
doi: 10.1002/tcr.201500005 pmid: 24595745 |
|
(d) Gieuw, M. H.; Ke, Z.; Yeung, Y.-Y. Chem. Rec. 2017, 17, 287.
doi: 10.1002/tcr.201600088 pmid: 24595745 |
|
(e) Landry, M. L.; Burns, N. Z. Acc. Chem. Res. 2018, 51, 1260.
doi: 10.1021/acs.accounts.8b00064 pmid: 24595745 |
|
[5] |
(a) Archer, N. J.; Rayner, C. M.; Bell, D.; Miller, D. Synlett 1994, 617.
|
(b) Guan, H.; Wang, H.; Huang, D.; Shi, Y. Tetrahedron 2012, 68, 2728.
doi: 10.1016/j.tet.2012.01.006 |
|
(c) Li, L.; Li, Z.; Huang, D.; Wang, H.; Shi, Y. RSC Adv. 2013, 3, 4523.
doi: 10.1039/c3ra40307f |
|
[6] |
(a) Denmark, S. E.; Kornfilt, D. J. P.; Vogler, T. J. Am. Chem. Soc. 2011, 133, 15308.
doi: 10.1021/ja2064395 pmid: 25411883 |
(b) Denmark, S. E.; Chi, H. M. J. Am. Chem. Soc. 2014, 136, 8915.
doi: 10.1021/ja5046296 pmid: 25411883 |
|
(c) Denmark, S. E.; Hartmann, E.; Kornfilt, D. J. P. Nat. Chem. 2014, 6, 1056.
doi: 10.1038/nchem.2109 pmid: 25411883 |
|
(d) Hartmann, E.; Denmark, S. E. Helv. Chim. Acta 2017, 100, e1700158.
pmid: 25411883 |
|
(e) Matviitsuk, A.; Denmark, S. E. Angew. Chem., Int. Ed. 2019, 58, 12486.
doi: 10.1002/anie.201906535 pmid: 25411883 |
|
(f) Roth, A.; Denmark, S. E. J. Am. Chem. Soc. 2019, 141, 13767.
doi: 10.1021/jacs.9b07019 pmid: 25411883 |
|
(g) Roth, A.; Denmark, S. E. Org. Lett. 2020, 22, 2501.
doi: 10.1021/acs.orglett.9b04347 pmid: 25411883 |
|
[7] |
(a) Liu, X.; An, R.; Zhang, X.; Luo, J.; Zhao, X. Angew. Chem., Int. Ed. 2016, 55, 5846.
doi: 10.1002/anie.201601713 |
(b) Luo, J.; Liu, X.; Zhao, X. Synlett 2017, 28, 397.
doi: 10.1055/s-0036-1588926 |
|
(c) Xu, J.; Zhang, Y.; Qin, T.; Zhao, X. Org. Lett. 2018, 20, 6384
doi: 10.1021/acs.orglett.8b02672 |
|
(d) Luo, J.; Cao, Q.; Cao, X.; Zhao, X. Nat. Commun. 2018, 9, 527.
doi: 10.1038/s41467-018-02955-0 |
|
(e) Liu, X.; Liang, Y.; Ji, J.; Luo, J.; Zhao, X. J. Am. Chem. Soc. 2018, 140, 4782.
doi: 10.1021/jacs.8b01513 |
|
(f) Liang, Y.; Zhao, X. ACS Catal. 2019, 9, 6896.
doi: 10.1021/acscatal.9b01900 |
|
(g) Qin, T.; Jiang, Q.; Ji, J.; Luo, J.; Zhao, X. Org. Biomol. Chem. 2019, 17, 1763.
doi: 10.1039/C8OB02575D |
|
(h) Guo, R.; Liu, Z.; Zhao, X. CCS Chem. 2020, 2, 2617.
|
|
(i) Zhang, Y.; Liang, Y.; Zhao, X. ACS Catal. 2021, 11, 3755.
doi: 10.1021/acscatal.1c00296 |
|
(j) Luo, J.; Zhang, Y.; Zhong, F.; Zhao, X. CCS Chem. 2022, 4, 1486.
doi: 10.31635/ccschem.021.202100777 |
|
[8] |
(a) Lucchini, V.; Modena, G.; Pasquato, L. J. Chem. Soc., hem. Commun. 1994, 1565.
pmid: 19227982 |
(b) Pasquato, L.; Modena, G. Chem. Commun. 1999, 1469.
pmid: 19227982 |
|
(c) Denmark, S. E.; Vogler, T. Chem.-Eur. J. 2009, 15, 11737.
doi: 10.1002/chem.200901377 pmid: 19227982 |
|
(d) Denmark, S. E.; Collins, W. R.; Cullen, M. D. J. Am. Chem. Soc. 2009, 131, 3490.
doi: 10.1021/ja900187y pmid: 19227982 |
|
[9] |
(a) McClellan, A. L. J. Chem. Educ. 1967, 44, 547.
doi: 10.1021/ed044p547 |
(b) Chen, D.; Oezguen, N.; Urvil, P.; Ferguson, X.; Dann, S. M.; Savidge, T. C. Sci. Adv. 2016, 2, e1501240.
|
|
(c) Dong, J.; Davis, A. P. Angew. Chem., Int. Ed. 2021, 60, 8035.
doi: 10.1002/anie.202012315 |
|
[10] |
(a) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.
doi: 10.1002/anie.200503132 |
(b) Yu, X.; Wang, W. Chem.-Asian J. 2008, 3, 516.
doi: 10.1002/asia.200700415 |
|
(c) Banik, S. M.; Levina, A.; Hyde, A. M.; Jacobsen, E. N. Science 2017, 358, 761.
|
|
(d) Pupo, G.; Ibba, F.; Ascough, D. M. H.; Vicini, A. C.; Ricci, P.; Christensen, K. E.; Pfeifer, L.; Morphy, J. R.; Brown, J. M.; Paton, R. S.; Gouverneur, V. Science 2018, 360, 638.
doi: 10.1126/science.aar7941 |
|
(e) Nishikawa, Y. Tetrahedron Lett. 2018, 59, 216.
doi: 10.1016/j.tetlet.2017.12.037 |
|
[11] |
(a) Xie, Y.-Y.; Chen, Z.-M.; Luo, H.-Y.; Shao, H.; Tu, Y.-Q.; Bao, X.; Cao, R.-F.; Zhang, S.-Y.; Tian, J.-M. Angew. Chem., Int. Ed. 2019, 58, 12491.
doi: 10.1002/anie.201907115 |
(b) Luo, H.-Y.; Xie, Y.-Y.; Song, X.-F.; Dong, J.-W.; Zhu, D.; Chen, Z.-M. Chem. Commun. 2019, 55, 9367.
doi: 10.1039/C9CC04758A |
|
(c) Luo, H.-Y.; Dong, J.-W.; Xie, Y.-Y.; Song, X.-F.; Zhu, D.; Ding, T.; Liu, Y.; Chen, Z.-M. Chem.-Eur. J. 2019, 25, 15411.
doi: 10.1002/chem.201904028 |
|
[12] |
(a) Maddox, S. M.; Dinh, A. N.; Armenta, F.; Um, J.; Gustafson, J. L. Org. Lett. 2016, 18, 5476.
pmid: 27754679 |
(b) Nalbandian, C. J.; Brown, Z. E.; Alvarez, E.; Gustafson, J. L. Org. Lett. 2018, 20, 3211.
doi: 10.1021/acs.orglett.8b01066 pmid: 27754679 |
|
[13] |
(a) Ye, A.-H.; Zhang, Y.; Xie, Y.-Y.; Luo, H.-Y.; Dong, J.-W.; Liu, X.-D.; Song, X.-F.; Ding, T.; Chen, Z.-M. Org. Lett. 2019, 21, 5106.
doi: 10.1021/acs.orglett.9b01706 |
(b) Song, X.-F.; Ding, T.-M.; Zhu, D.; Huang, J.; Chen, Z.-M. Org. Lett. 2020, 22, 7052.
doi: 10.1021/acs.orglett.0c02744 |
|
[14] |
Liu, X.-D.; Luo, Y.; Huo, X.; Luo, H.-Y.; Cao, R.-F.; Chen, Z.-M. CCS Chem. 2022, 4, 3342.
doi: 10.31635/ccschem.021.202101590 |
[15] |
(a) Campolo, D.; Gastaldi, S.; Roussel, C.; Bertrand, M. P.; Nechab, M. Chem. Soc. Rev. 2013, 42, 8434.
doi: 10.1039/c3cs60182j pmid: 33491680 |
(b) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330.
doi: 10.1021/acs.chemrev.6b00094 pmid: 33491680 |
|
(c) Loxq, P.; Manoury, E.; Poli, R.; Deydier, E.; Labande, A. Coord. Chem. Rev. 2016, 308, 131.
doi: 10.1016/j.ccr.2015.07.006 pmid: 33491680 |
|
(d) Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.
doi: 10.1021/acs.accounts.7b00602 pmid: 33491680 |
|
(e) Di Iorio, N.; Crotti, S.; Bencivenni, G. Chem. Rec. 2019, 19, 2095.
doi: 10.1002/tcr.201800194 pmid: 33491680 |
|
(f) Metrano, A. J.; Miller, S. J. Acc. Chem. Res. 2019, 52, 199.
doi: 10.1021/acs.accounts.8b00473 pmid: 33491680 |
|
(g) Carmona, J. A.; Rodríguez-Franco, C.; Fernández, R.; Hornillos, V.; Lassaletta, J. M. Chem. Soc. Rev. 2021, 50, 2968.
doi: 10.1039/d0cs00870b pmid: 33491680 |
|
(h) Cheng, J. K.; Xiang, S.-H.; Li, S.; Ye, L.; Tan, B. Chem. Rev. 2021, 121, 4805.
doi: 10.1021/acs.chemrev.0c01306 pmid: 33491680 |
|
(i) Song, R.; Xie, Y.; Jin, Z.; Chi, R. Y. Angew. Chem., Int. Ed. 2021, 60, 26026.
doi: 10.1002/anie.202108630 pmid: 33491680 |
|
[16] |
Mori, K.; Ichikawa, Y.; Kobayashi, M.; Shibata, Y.; Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2013, 135, 3964.
doi: 10.1021/ja311902f |
[17] |
Luo, H.-Y.; Li, Z.-H.; Zhu, D.; Yang, Q.; Cao, R.-F.; Ding, T.-M.; Chen Z.-M. J. Am. Chem. Soc. 2022, 144, 2943.
doi: 10.1021/jacs.1c09635 |
[18] |
(a) Xi, C.-C.; Chen, Z.-M.; Zhang, S.-Y.; Tu, Y.-Q. Org. Lett. 2018, 20, 4227.
doi: 10.1021/acs.orglett.8b01627 |
(b) Song, X.-F.; Ye, A.-H.; Xie, Y.-Y.; Dong, J.-W.; Chen, C.; Zhang, Y.; Chen, Z.-M. Org. Lett. 2019, 21, 9550.
doi: 10.1021/acs.orglett.9b03722 |
|
(c) Zhu, D.; Ding, T.-M.; Luo, H.-Y.; Ke, H.; Chen, Z.-M. Org. Lett. 2020, 22, 7699.
doi: 10.1021/acs.orglett.0c02875 |
|
(d) Zhu, D.; Luo, H.-Y.; Chen, Z.-M. Org. Lett. 2021, 23, 1044.
doi: 10.1021/acs.orglett.0c04236 |
|
(e) Zhu, D.; Ye, A.-H.; Chen, Z.-M. Synthesis 2021, 53, 3744.
doi: 10.1055/a-1493-6885 |
|
(f) Cao, R.-F.; Yu, L.; Huo, Y.-X.; Li, Y.; Xue, X.-S.; Chen, Z.-M. Org. Lett. 2022, 24, 4093.
doi: 10.1021/acs.orglett.2c01731 |
|
(g) Ye, A.-H.; Li, Z.-H.; Ding, T.-M.; Ke, H.; Chen, Z.-M. Chem.- Asian J. 2022, e202200256.
|
|
(h) Ye, A.-H.; Song, X.-F.; Chen, Z.-M. Chem.-Asian J. 2022, e202200802.
|
|
(i) Zhu, D.; Yu, L.; Luo, H.-Y.; Xue, X.-S.; Chen, Z.-M. Angew. Chem., Int. Ed. 2022, 10.1002/anie.202211782.
|
[1] | Qiuyu Gu, Tianyu Peng, Mingcheng Bo, Yifeng Wang. Selective Mono- and Di-deuterodefluorination of Trifluoroacetamides Promoted by Boryl Radicals [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1832-1842. |
[2] | Xun Xiang, Zhaolin He, Xiuqin Dong. Recent Advances of Efficient Synthesis of Chiral Molecules Promoted by Pd/Chiral Phosphoric Acid Synergistic Catalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 791-808. |
[3] | Yiling Zhao, Zhikang Chen, Lei Li, Conglei Liu, Hongping Zhu. Silylene/Organoaluminum Lewis Pair System and the Initiation Property for Polymerization of (Meth)acrylates [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3590-3597. |
[4] | Jiajie Zhu, Yi Wan, Qiyang Yuan, Jinlian Wei, Yongqiang Zhang. Research of Visible Light/Lewis Base Dual Catalytic Defluorinative Silylation of Trifluoromethyl-Substituted Alkenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3623-3634. |
[5] | Xinhao Sun, Xuelun Duan, Wangze Song, Wenfeng Jiang. Brønsted Acid-Catalyzed the Synthesis of Sulfoximide Substituted Dihydropyranone Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 487-497. |
[6] | Lei Xu, Fang Wang, Fan Chen, Shengqing Zhu, Lingling Chu. Recent Advances in Photoredox/Nickel Dual-Catalyzed Difunctionalization of Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 1-15. |
[7] | Quanbin Jiang, Xiaodan Zhao. Chiral Bifunctional Chalcogenide-Catalyzed Enantioselective Electrophilic Thiofunctionalization of Alkenes [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 443-454. |
[8] | Jianming Zhang, Jian Gao, Jie Feng, Tao Lu, Ding Du. Recent Advances in Synergistic Catalysis by Merging N-Heterocyclic Carbenes and Transition Metals [J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3792-3807. |
[9] | Guang Yang, Yanwei Wang, Youai Qiu. Advances in Organic Photoelectrochemical Synergistic Catalysis [J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3935-3947. |
[10] | Hu Xiaoyan, Hu Fangzhi, Zhang Minmin, Liao Yijun, Xu Xiaoying, Yuan Weicheng, Zhang Xiaomei. Enantioselective Hydrosilylation of N-Aryl Diaryl Ketimines [J]. Chin. J. Org. Chem., 2016, 36(8): 1895-1906. |
[11] | Qin Tianyou, Zhang Sean Xiao-An, Liao Weiwei. Lewis Base-Catalyzed Allylic Alkylation of α-Amino Nitriles and Cyanohydrins and Synthetic Applications [J]. Chin. J. Org. Chem., 2014, 34(11): 2187-2194. |
[12] | WANG Jin-Zhu, LIU Qi-Bin, ZHOU Yong-Gui. Synthesis of Chiral 4-Dimethylaminopyridine Analogue 2-(4-Dimethylaminopyridin-2-yl)cyclohexanol [J]. Chin. J. Org. Chem., 2010, 30(04): 617-620. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||