Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (8): 2647-2663.DOI: 10.6023/cjoc202303020 Previous Articles Next Articles
归春明a, 周潼瑶a, 王海峰a, 严琼姣a, 汪伟a,*(), 黄锦b,*(), 陈芬儿a,c,*()
收稿日期:
2023-03-15
修回日期:
2023-04-19
发布日期:
2023-05-05
基金资助:
Chunming Guia, Tongyao Zhoua, Haifeng Wanga, Qiongjiao Yana, Wei Wanga(), Jin Huangb(), Fener Chena,c()
Received:
2023-03-15
Revised:
2023-04-19
Published:
2023-05-05
Contact:
*Supported by:
Share
Chunming Gui, Tongyao Zhou, Haifeng Wang, Qiongjiao Yan, Wei Wang, Jin Huang, Fener Chen. Recent Advances in Visible Light Photoredox-Catalyzed Alkynylation[J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2647-2663.
[1] |
(a) Trost, B. M.; Li, C.-J. Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations, Wiley-VCH, New York, 2014.
pmid: 26796328 |
(b) Trotuş, I.-T.; Zimmermann, T.; Schüth, F. Chem. Rev. 2014, 114, 1761.
doi: 10.1021/cr400357r pmid: 26796328 |
|
(c) Tiwari, V. K.; Mishra, B. B.; Mishra, K. B.; Mishra, N.; Singh, A. S.; Chen, X. Chem. Rev. 2016, 116, 3086.
doi: 10.1021/acs.chemrev.5b00408 pmid: 26796328 |
|
(d) Huang, D.; Liu, Y.; Qin, A.; Tang, B. Z. Polym. Chem. 2018, 9, 2853.
doi: 10.1039/C7PY02047C pmid: 26796328 |
|
(e) Song, X.; Zhang, Y.; Ji, P.; Zeng, F.; Bi, F.; Wang, W. Green Synth. Catal. 2020, 1, 66.
pmid: 26796328 |
|
[2] |
(a) Wang, P.-Z.; Zhao, Q.-Q.; Xiao, W.-J.; Chen, J.-R. Green Synth. Catal. 2020, 1, 42.
|
(b) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
doi: 10.1021/acs.chemrev.0c00030 |
|
(c) Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; Mao, E.; Millet, A.; Oakley, J. V.; Reed, N. L.; Sakai, H. A.; Seath, C. P.; MacMillan, D. W. C. Chem. Rev. 2022, 122, 1485.
doi: 10.1021/acs.chemrev.1c00383 |
|
(d) Xuan, L.; Du, R.; Lei, P.; Zhao, W.; Tan, L.; Ni, C.; Wang, H.; Yan, Q.; Wang, W.; Chen, F. Green Chem. 2022, 24, 9475.
doi: 10.1039/D2GC02874C |
|
(e) Lu, K.-L.; Ma, Y.-Y.; Liu, S.-H.; Guo, S.-X.; Zhang, Y.-Q. Chin. J. Chem. 2022, 40, 681.
doi: 10.1002/cjoc.v40.6 |
|
(f) Zhang, Y.-C.; Chen, Y.; Sun, J.; Wang, J.-Y.; Zhou, M.-D. Chin. J. Chem. 2022, 40, 713.
doi: 10.1002/cjoc.v40.6 |
|
(g) Wu, D.-Q.; Wu, L.-Q.; Chen, P.-H.; Liu, G.-S. Chin. J. Chem. 2022, 40, 1699.
doi: 10.1002/cjoc.v40.14 |
|
(h) Wang, P.-Z.; Xiao, W.-J.; Chen, J.-R. Nat. Rev. Chem. 2023, 7, 35.
doi: 10.1038/s41570-022-00441-2 |
|
[3] |
Perepichka, I.; Kundu, S.; Hearne, Z.; Li, C.-J. Org. Biomol. Chem. 2015, 13, 447.
doi: 10.1039/c4ob02138j pmid: 25372475 |
[4] |
Zhou, Y.; Chen, H.; Lei, P.-P.; Gui, C.-M.; Wang, H.-F..; Yan, Q.-J.; Wang, W.; Chen, F.-E. Chin. Chem. Lett. 2022, 33, 4850.
doi: 10.1016/j.cclet.2022.02.029 |
[5] |
Zhang, H.; Zhang, P.; Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2017, 19, 1016.
doi: 10.1021/acs.orglett.6b03888 pmid: 28198184 |
[6] |
Hazra, A.; Lee, M. T.; Chiu, J. F.; Lalic, G. Angew. Chem., Int. Ed. 2018, 57, 5492.
doi: 10.1002/anie.v57.19 |
[7] |
Chen, J.; He, B.-Q.; Wang, P.-Z.; Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.-R.; Xiao, W.-J. Org. Lett. 2019, 21, 4359.
doi: 10.1021/acs.orglett.9b01529 pmid: 31141377 |
[8] |
Sagadevan, A.; Pampana, V. K. K.; Hwang, K. C. Angew. Chem., Int. Ed. 2019, 58, 3838.
doi: 10.1002/anie.v58.12 |
[9] |
Zhang, Y.; Zhang, D. Org. Biomol. Chem. 2020, 18, 4479.
doi: 10.1039/D0OB00835D |
[10] |
Mao, Y.; Zhao, W.; Lu, S.; Yu, L.; Wang, Y.; Liang, Y.; Ni, S.; Pan, Y. Chem. Sci. 2020, 11, 4939.
doi: 10.1039/d0sc02213f pmid: 34122950 |
[11] |
Xia, H.-D.; Li, Z.-L.; Gu, Q.-S.; Dong, X.-Y.; Fang, J.-H.; Du, X.-Y.; Wang, L.-L.; Liu, X.-Y. Angew. Chem., Int. Ed. 2020, 59, 16926.
doi: 10.1002/anie.v59.39 |
[12] |
Dong, X. Y.; Zhang, Y. F.; Ma, C. L.; Gu, Q. S.; Wang, F. L.; Li, Z. L.; Jiang, S. P.; Liu, X. Y. Nat. Chem. 2019, 11, 1158.
doi: 10.1038/s41557-019-0346-2 |
[13] |
Zhang, Z.-H.; Dong, X.-Y.; Du, X.-Y.; Gu, Q.-S.; Li, Z.-L.; Liu, X.-Y. Nat. Commun. 2019, 10, 5689.
doi: 10.1038/s41467-019-13705-1 |
[14] |
Liu, L.; Guo, K. X.; Tian, Y.; Yang, C. J.; Gu, Q. S.; Li, Z. L.; Ye, L.; Liu, X. Y. Angew. Chem., Int. Ed. 2021, 60, 26710.
doi: 10.1002/anie.v60.51 |
[15] |
Wang, F.-L.; Yang, C.-J.; Liu, J.-R.; Yang, N.-Y.; Dong, X.-Y.; Jiang, R.-Q.; Chang, X.-Y.; Li, Z.-L.; Xu, G.-X.; Yuan, D.-L.; Zhang, Y.-S.; Gu, Q.-S.; Hong, X.; Liu, X.-Y. Nat. Chem. 2022, 14, 949.
doi: 10.1038/s41557-022-00954-9 |
[16] |
Zhao, B.; Wu, Y.; Yuan, Y.; Shi, Z. Chem. Commun. 2020, 56, 4676.
doi: 10.1039/D0CC00988A |
[17] |
Zhang, Y.; Zhang, D. J. Org. Chem. 2020, 85, 3213.
doi: 10.1021/acs.joc.9b03087 |
[18] |
Zhang, Y.; Sun, Y.; Chen, B.; Xu, M.; Li, C.; Zhang, D.; Zhang, G. Org. Lett. 2020, 22, 1490.
doi: 10.1021/acs.orglett.0c00071 |
[19] |
Zhu, M.; Messaoudi, S. ACS Catal. 2021, 11, 6334.
doi: 10.1021/acscatal.1c01600 |
[20] |
Cao, Z.; Li, J.; Sun, Y.; Zhang, H.; Mo, X.; Cao, X.; Zhang, G. Chem. Sci. 2021, 12, 4836.
doi: 10.1039/D0SC05883A |
[21] |
Shi, J.; Xu, Q.-L.; Ni, Y.-Q.; Li, L.; Pan, F. Org. Lett. 2022, 24, 4609.
doi: 10.1021/acs.orglett.2c01721 |
[22] |
Iqbal, N.; Jung, J.; Park, S.; Cho, E. J. Angew. Chem., Int. Ed. 2014, 53, 539.
doi: 10.1002/anie.v53.2 |
[23] |
Xiao, Y.; Chun, Y.-K.; Cheng, S.-C.; Liu, R.; Tse, M.-K.; Ko, C.-C. Org. Biomol. Chem. 2020, 18, 8686.
doi: 10.1039/D0OB01767A |
[24] |
Ochiai, M.; Masaki, Y.; Shiro, M. J. Org. Chem. 1991, 56, 5511.
doi: 10.1021/jo00019a007 |
[25] |
Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280.
doi: 10.1021/ja413208y |
[26] |
Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196.
doi: 10.1002/anie.201504559 |
[27] |
Le Vaillant, F.; Courant, T.; Waser, J. Angew. Chem., Int. Ed. 2015, 54, 11200.
doi: 10.1002/anie.201505111 |
[28] |
Le Vaillant, F.; Waser, J. Chimia 2017, 71, 226.
doi: 10.2533/chimia.2017.226 pmid: 28446341 |
[29] |
Pan, Y.; Jia, K.; Chen, Y.; Chen, Y. Beilstein J. Org. Chem. 2018, 14, 1215.
doi: 10.3762/bjoc.14.103 |
[30] |
Liang, S.; Angnes, R. A.; Potnis, C. S.; Hammond, G. B. Tetrahedron Lett. 2019, 60, 151230.
doi: 10.1016/j.tetlet.2019.151230 |
[31] |
Voutyritsa, E.; Garreau, M.; Kokotou, M. G.; Triandafillidi, I.; Waser, J.; Kokotos, C. G. Chem.-Eur. J. 2020, 26, 14453.
doi: 10.1002/chem.v26.63 |
[32] |
Amos, S. G. E.; Nicolai, S.; Waser, J. Chem. Sci. 2020, 11, 11274.
doi: 10.1039/D0SC03655B |
[33] |
Liu, Z.; Wu, S.; Chen, Y. ACS Catal. 2021, 11, 10565.
doi: 10.1021/acscatal.1c02981 |
[34] |
Amos, S. G. E.; Cavalli, D.; Le Vaillant, F.; Waser, J. Angew. Chem., Int. Ed. 2021, 60, 23827.
doi: 10.1002/anie.v60.44 |
[35] |
Li, M.; Liu, T.; Li, J.; He, H.; Dai, H.; Xie, J. J. Org. Chem. 2021, 86, 12386.
doi: 10.1021/acs.joc.1c01356 |
[36] |
Liu, Z.; Pan, Y.; Zou, P.; Huang, H.; Chen, Y.; Chen, Y. Org. Lett. 2022, 24, 5951.
doi: 10.1021/acs.orglett.2c02210 |
[37] |
Zuo, Z.; Studer, A. Org. Lett. 2022, 24, 949.
doi: 10.1021/acs.orglett.1c04319 |
[38] |
Nguyen, T. V. T.; Wodrich, M. D.; Waser, J. Chem. Sci. 2022, 13, 12831.
doi: 10.1039/d2sc04344k pmid: 36519037 |
[39] |
Zhao, Y.; Jin, J.; Chan, P. W. H. Adv. Synth. Catal. 2019, 361, 1313.
doi: 10.1002/adsc.v361.6 |
[40] |
Zhao, Y.; Merrett, J. T.; Jin, J.; Yu, L.-J.; Coote, M. L.; Chan, P. W. H. Org. Chem. Front. 2023, 10, 759.
doi: 10.1039/D2QO01581A |
[41] |
Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y. Chem. Commun. 2015, 51, 5275.
doi: 10.1039/C4CC06344A |
[42] |
Jiang, M.; Jin, Y.; Yang, H.; Fu, H. Sci. Rep. 2016, 6, 26161.
doi: 10.1038/srep26161 pmid: 27185220 |
[43] |
Gao, C.; Li, J.; Yu, J.; Yang, H.; Fu, H. Chem. Commun. 2016, 52, 7292.
doi: 10.1039/C6CC01632D |
[44] |
Tanaka, I.; Sawamura, M.; Shimizu, Y. Org. Lett. 2022, 24, 520.
doi: 10.1021/acs.orglett.1c03927 |
[45] |
Kim, S.; Rojas-Martin, J.; Toste, F. D. Chem. Sci. 2016, 7, 85.
doi: 10.1039/C5SC03025K |
[46] |
Witzel, S.; Sekine, K.; Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2018, 54, 13802.
doi: 10.1039/C8CC08227H |
[47] |
Zheng, H.; Fan, Y.; Song, Y.; Chen, J. S.; You, E.; Labalme, S.; Lin, W. J. Am. Chem. Soc. 2022, 144, 10694.
doi: 10.1021/jacs.2c03062 |
[48] |
Liang, L.; Niu, H.-Y.; Li, R.-L.; Wang, Y.-F.; Yan, J.-K.; Li, C.-G.; Guo, H.-M. Org. Lett. 2020, 22, 6842.
doi: 10.1021/acs.orglett.0c02364 pmid: 32810404 |
[49] |
Shanmugam, M.; Sagadevan, A.; Charpe, V. P.; Pampana, V. K. K.; Hwang, K. C. ChemSusChem 2020, 13, 287.
doi: 10.1002/cssc.201901813 pmid: 31476259 |
[50] |
Huang, H.; Zhang, G.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 7872.
doi: 10.1002/anie.201502369 |
[51] |
Jia, K.; Pan, Y.; Chen, Y. Angew. Chem., Int. Ed. 2017, 56, 2478.
doi: 10.1002/anie.201611897 |
[52] |
Mukherjee, S.; Garza-Sanchez, R. A.; Tlahuext-Aca, A.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 14723.
doi: 10.1002/anie.201708037 |
[53] |
Yang, Z.; Koenigs, R. M. Chem.-Eur. J. 2021, 27, 3694.
doi: 10.1002/chem.v27.11 |
[54] |
Jia, K.; Li, J.; Chen, Y. Chem.-Eur. J. 2018, 24, 3174.
doi: 10.1002/chem.201800202 |
[55] |
Hosseini-Sarvari, M.; Jafari, F. Dalton Trans. 2020, 49, 3001.
doi: 10.1039/c9dt04757c pmid: 32083623 |
[56] |
Reddy, M. B.; Anandhan, R. Chem. Commun. 2020, 56, 3781.
doi: 10.1039/D0CC00815J |
[57] |
Gan, Q.-C.; Song, Z.-Q.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2022, 24, 5192.
doi: 10.1021/acs.orglett.2c02022 |
[58] |
Lu, F.-D.; Liu, D.; Zhu, L.; Lu, L.-Q.; Yang, Q.; Zhou, Q.-Q.; Wei, Y.; Lan, Y.; Xiao, W.-J. J. Am. Chem. Soc. 2019, 141, 6167.
doi: 10.1021/jacs.9b02338 |
[59] |
Zhang, L.; Chu, Y.; Ma, P.; Zhao, S.; Li, Q.; Chen, B.; Hong, X.; Sun, J. Org. Biomol. Chem. 2020, 18, 1073.
doi: 10.1039/C9OB02624J |
[60] |
Zhou, Z.-Z.; Jiao, R.-Q.; Yang, K.; Chen, X.-M.; Liang, Y.-M. Chem. Commun. 2020, 56, 12957.
doi: 10.1039/D0CC04986G |
[61] |
Huang, H.-M.; Bellotti, P.; Daniliuc, C. G.; Glorius, F. Angew. Chem., Int. Ed. 2021, 60, 2464.
doi: 10.1002/anie.v60.5 |
[62] |
Kim, S.; Lee, Y.; Cho, E. J. J. Org. Chem. 2023, 88, 6382.
doi: 10.1021/acs.joc.2c02063 |
[1] | Jiyu Liu, Shengyu Li, Kuan Chen, Yin Zhu, Yuan Zhang. Triphenylamine-Based Ordered Mesoporous Polymer as a Metal-Free Photocatalyst for Oxidation of Thiols to Disulfide [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 605-612. |
[2] | Jianghu Dong, Liangming Xuan, Chi Wang, Chenxi Zhao, Haifeng Wang, Qiongjiao Yan, Wei Wang, Fen'er Chen. Recent Advances in Visible-Light-Induced C(3)—H Functionalization of Quinoxalinones under Transition-Metal-Free or Photocatalyst-Free [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 111-136. |
[3] | Xiaona Yang, Hongyu Guo, Rong Zhou. Progress in Visible-Light Promoted Transformations of Organosilicon Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2720-2742. |
[4] | Chunyang Liu, Yan Li, Qian Zhang. Copper-Catalyzed Allylic C(sp3)—H Sulfonylation of Cyclic Olefins [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1091-1101. |
[5] | Yadong Li, Pengju Wu, Zhiyong Yang. Synthesis of 2-Aryl Benzoxazoles from Benzoxazoles and α-Ketoic Acids by Photoredox Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1770-1777. |
[6] | Tianyi Sun, Yifan Zhang, Yuanjie Meng, Yi Wang, Qifeng Zhu, Yuxin Jiang, Shihui Liu. Photoredox-Copper Dual-Catalyzed Site-Selective O-Alkylation of Glycosides [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1414-1422. |
[7] | Xin Sun, Chaofan Qu, Chaorui Ma, Xiaowei Zhao, Guobi Chai, Zhiyong Jiang. Photoredox Catalytic Cascade Radical Addition to Construct 1,4- Diketone-Functionalized Quinoxalin-2(1H)-one Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1396-1406. |
[8] | Lüyin Zheng, Yihan Wang, Liuhuan Cai, Wei Guo. Progress in C—CF3/C—N Bond Formation Reactions of Alkenes Involving in Free Radicals [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4078-4098. |
[9] | Pan-Pan Gao, Wen-Jing Xiao, Jia-Rong Chen. Recent Progresses in Visible-Light-Driven Alkene Synthesis [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 3923-3943. |
[10] | Meng Li, Dongyang Zhao, Kai Sun. Visible Light Driving Alkene Difunctionalization Reaction Involving Group Migration [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4152-4168. |
[11] | Yang Xie, Jun Xuan. Photocatalytic Reactions Involving Diazo Compounds as Radical Precursors [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4247-4256. |
[12] | Qian Xiao, Qing-Xiao Tong, Jian-Ji Zhong. Recent Progress on the Synthesis of Benzazepine Derivatives via Radical Cascade Cyclization Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 3979-3994. |
[13] | Yaohui Xu, Zhen Wu, Xinxin Wu, Chen Zhu. Transition-Metal Free Radical-Mediated C—H Bond Alkynylation and Allylation of Ethers, Aldehydes and Amides [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4340-4349. |
[14] | Lei Xu, Fang Wang, Fan Chen, Shengqing Zhu, Lingling Chu. Recent Advances in Photoredox/Nickel Dual-Catalyzed Difunctionalization of Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 1-15. |
[15] | Yingjie Liu, Zhichuan Wang, Jianping Meng, Chen Li, Kai Sun. Research Progress of Photoelectric Co-catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(1): 100-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||