Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (12): 4247-4256.DOI: 10.6023/cjoc202207016 Previous Articles Next Articles
Special Issue: 自由基化学专辑
REVIEWS
收稿日期:
2022-07-07
修回日期:
2022-08-09
发布日期:
2022-08-17
通讯作者:
宣俊
基金资助:
Received:
2022-07-07
Revised:
2022-08-09
Published:
2022-08-17
Contact:
Jun Xuan
Supported by:
Share
Yang Xie, Jun Xuan. Photocatalytic Reactions Involving Diazo Compounds as Radical Precursors[J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4247-4256.
[1] |
Gomberg, M. J. Am. Chem. Soc. 1900, 22, 757.
doi: 10.1021/ja02049a006 |
[2] |
Yan, M.; Lo, J. C.; Edward, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.
doi: 10.1021/jacs.6b08856 |
[3] |
(a) Yi, H.; Zhang, G.-T.; Wang, H.-M.; Huang, Z.-Y.; Wang, J.; Singh, A. K.; Lei, A.-W. Chem. Rev. 2017, 117, 9016.
doi: 10.1021/acs.chemrev.6b00620 |
(b) Huang, C.-Y.; Li, J.-B.; Li, C.-J. Chem. Sci. 2022, 13, 5465.
doi: 10.1039/D2SC00202G |
|
(c) Kwon, K.; Simons, R. T.; Nandakumar, M.; Roizen, J, L. Chem. Rev. 2022, 122, 2353.
doi: 10.1021/acs.chemrev.1c00444 |
|
[4] |
(a) Yang, Z.; Stivanin, M. L.; Jurberg, I. D.; Koenigs, R. M. Chem. Soc. Rev. 2020, 49, 6833.
doi: 10.1039/D0CS00224K |
(b) Durka, J.; Turkowska, J.; Gryko, D. ACS. Sustainable. Chem. Eng. 2021, 9, 8895.
doi: 10.1021/acssuschemeng.1c01976 |
|
[5] |
Chen, Z.-L.; Empel, C.; Wang, K.; Wu, P.-P.; Cai, B.-G.; Li, L.; Koenigs, R. M.; Xuan, J. Org. Lett. 2022, 24, 2232.
doi: 10.1021/acs.orglett.2c00609 |
[6] |
(a) Qian, L.; Cai, B.-G.; Li, L.; Xuan, J. Org. Lett. 2021, 23, 6951.
doi: 10.1021/acs.orglett.1c02555 |
(b) Cai, B.-G.; Li, Q.; Zhang, Q.; Li, L.; Xuan, J. Org. Chem. Front. 2021, 8, 5982.
doi: 10.1039/D1QO01102B |
|
(c) Zhou, S.-J.; Cai, B.-G.; Hu, C.-X.; Cheng, X.; Li, L.; Xuan, J. Chin. Chem. Lett. 2021, 32, 2577.
doi: 10.1016/j.cclet.2021.03.010 |
|
(d) Cai, B.-G.; Li, Q.; Li, L.; Xuan, J. Green. Synth. Catal. 2022, 3, 194.
|
|
[7] |
(a) Lu, J.; Li, L.; He, X.-K.; Xu, G.-Y.; Xuan, J. Chin. J. Chem. 2021, 39, 1646.
doi: 10.1002/cjoc.202100064 |
(b) Cai, B.-G.; Luo, S.-S.; Li, L.; Li, L.; Xuan, J.; Xiao, W.-J. CCS Chem. 2020, 2, 2764.
|
|
(c) Cai, B.-G.; Li, L.; Xu, G.-Y.; Xiao, W.-J; Xuan, J. Photochem. Photobiol. Sci. 2021, 20, 823.
doi: 10.1007/s43630-021-00062-6 |
|
(d) Cheng, X.; Cai, B.-G.; Mao, H.; Lu, J.; Li, L.; Wang, K.; Xuan, J. Org. Lett. 2021, 23, 4109.
doi: 10.1021/acs.orglett.1c00979 |
|
(e) Ye, C.; Cai, B.-G.; Lu, J.; Cheng, X.; Li, L.; Pan, Z.-W.; Xuan, J. J. Org. Chem. 2021, 86, 1012.
doi: 10.1021/acs.joc.0c02500 |
|
[8] |
Chen, Z.; Zheng, Y.; Ma, J.-A.; Angew. Chem., Int. Ed. 2017, 56, 4569.
doi: 10.1002/anie.201700955 |
[9] |
Zhang, Y.; Wang, J.-H. Chem. Commun. 2009, 5390.
|
[10] |
(a) Li, Wei.; Liu, X.-H.; Hao, X.-Y.; Hu, X.-L.; Chu, Y.-Y.; Cao, W.-D.; Qin, S.; Hu, C.-W.; Lin, L.-L.; Feng, X.-M. J. Am. Chem. Soc. 2011, 133, 15268.
doi: 10.1021/ja2056159 pmid: 21882861 |
(b) Li, L.; Chen, J.-J.; Li, Y.-J.; Bu, X.-B.; L, Qun.; Zhao, Y.-L. Angew. Chem., Int. Ed. 2015, 5, 12107.
pmid: 21882861 |
|
(c) Zhang, L.; Chen, J.-J.; Liu, S.-S.; Liang, Y.-X.; Zhao, Y.-L. Adv. Synth. Catal. 2018, 359, 351.
doi: 10.1002/adsc.201600574 pmid: 21882861 |
|
[11] |
(a) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
doi: 10.1002/anie.201200223 pmid: 32195482 |
(b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
doi: 10.1021/cr300503r pmid: 32195482 |
|
(c) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China. Chem. 2019, 62, 24.
doi: 10.1007/s11426-018-9399-2 pmid: 32195482 |
|
(d) Cai, B.-G.; Xuan, J.; Xiao, W.-J.; Sci. Bull. 2019, 64, 337.
doi: 10.1016/j.scib.2019.02.002 pmid: 32195482 |
|
(e) Xuan, J.; He, X.-K.; Xiao, W.-J. Chem. Soc. Rev. 2020, 49, 2546.
doi: 10.1039/c9cs00523d pmid: 32195482 |
|
[12] |
Wang, Z.-F.; Herraiz, A. G.; Hoyo, A. M. D.; Suero, M. G. Nature 2018, 554, 86.
doi: 10.1038/nature25185 |
[13] |
Li, P.; Zhao, J.-J.; Shi, L.-J.; Wang, J.; Shi, X.-D.; Li, F.-W. Nat. Commun. 2018, 9, 1972.
doi: 10.1038/s41467-018-04331-4 |
[14] |
Su, Y.-L.; Liu, G.-X.; Angelis, L. D.; He, R.; Al-Sayyed, A.; Schanze, K. S.; Hu, W.-H.; Qiu, H.; Doyle, M. P. ACS Catal. 2022, 12, 1357.
doi: 10.1021/acscatal.1c05611 |
[15] |
(a) Majumdar, K. C.; Chattopadhyay, S. K. Heterocycles in Natural Product Synthesis, Wiley-VCH Verlag & Co. KGaA, Weinheim, 2011.
|
(b) Baumann, M.; Baxendale, I. R. J. Org. Chem. 2013, 9, 2265.
|
|
(c) Khanfar, M. A.; Hill, R. A.; Kaddoumi, A.; El Sayed, K. A. J. Med. Chem. 2010, 53, 8534.
doi: 10.1021/jm100941j |
|
(d) Rapolu, S.; Alla, M.; Bommena, V. R.; Murthy, R.; Jain, N.; Bommareddy, V. R.; Bommineni, M. R. Eur. J. Med. Chem. 2013, 66, 91.
doi: 10.1016/j.ejmech.2013.05.024 |
|
[16] |
(a) Li, J.; Lu, X.-C.; Xu, Y.; Wen, J.-X.; Hou, G.-Q.; Liu, L. Org. Lett. 2020, 22, 9621.
doi: 10.1021/acs.orglett.0c03663 |
(b) Wen, J.-X.; Zhao, W.-Y.; Gao, X.; Ren, X.-F.; Dong, C.-P.; Wang, C.-L.; Liu, L.; Li, J. J. Org. Chem. 2022, 86, 1012.
doi: 10.1021/acs.joc.0c02500 |
|
[17] |
Zhao, W.-W.; Shao, Y.-C.; Wang, A.-N.; Huang, J.-L.; He, C.-Y.; Cui, B.-D.; Wan, N.-W.; Chen, Y.-Z.; Han, W.-Y. Org. Lett. 2021, 23, 9256.
doi: 10.1021/acs.orglett.1c03603 |
[18] |
Li, X.-D.; Golz, C.; Alcarazo, M. Angew. Chem. Int. Ed. 2021, 60, 6943.
doi: 10.1002/anie.202014775 |
[19] |
Dong, J.-Y.; Wang, H.; Mao, S.-K.; Wang, X.; Zhou, M.-D.; Li, L. Adv. Synth. Catal. 2021, 363, 2133.
doi: 10.1002/adsc.202001436 |
[20] |
Huang, X.-Q.; Webster, R. D.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 12636.
doi: 10.1021/jacs.6b07692 |
[21] |
(a) Jurberg, I. D.; Davies, H. M. L. Chem. Sci. 2018, 9, 5112.
doi: 10.1039/c8sc01165f pmid: 29938043 |
(b) Zhang, Z.-Y.; Yadagiri, D.; Gevorgyan, V. Chem. Sci. 2019, 10, 8399.
doi: 10.1039/C9SC02448D pmid: 29938043 |
|
[22] |
Fu, X.; Tang, J.; Hua, R.-Y.; Li, X.-Q.; Kang, Z.-H.; Qiu, H.; Hu, W.-H. Org. Lett. 2022, 24, 2208.
doi: 10.1021/acs.orglett.2c00516 |
[23] |
(a) Boyd, M. R.; Hallock, Y. F.; Cardellina, J. H.; Manfredi, K. P.; Blunt, J. W.; McMahon, J. B. Buckheit, R. W.; Brignmann, G.; Schaffer, M.; Cragg, G. M.; Thomas, D. W. Johnson, G. J. J. Med. Chem. 1994, 37, 1740.
pmid: 25756503 |
(b) Boudesocque-Delaye, L.; Agostinho, D.; Bodet, C.; Thery- Kone, I.; Allouch, H.; Gueiffer, A.; Nuzillard, J.-M.; Enguehard- Gueiffer, C. J. Nat. Prod. 2015, 78, 597.
doi: 10.1021/np5003252 pmid: 25756503 |
|
[24] |
Dötz, K. H. Angew. Chem. Int. Ed. 1975, 14, 644.
|
[25] |
He, Y.-W.; Chen, H.-G.; Li, L.-Y.; Huang, J.; Xiao, T.-B.; Anand, D.; Zhou, L. J. Photochem. Photobiol. A Chem. 2018, 355, 220.
doi: 10.1016/j.jphotochem.2017.09.027 |
[26] |
(a) Nagode, B. S.; Kant, R.; Rastogi, N. Org. Lett. 2019, 21, 6249.
doi: 10.1021/acs.orglett.9b02135 |
(b) Devi, L.; Pokhriyal, A.; Shekhar, S.; Kant, R.; Mukherjee, S.; Rastog, N. Asian. J. Org. Chem. 2021, 10, 3328.
doi: 10.1002/ajoc.202100518 |
|
(c) Li, W.-Y.; Zhou, L. Org. Lett. 2021, 23, 4279.
doi: 10.1021/acs.orglett.1c01204 |
|
[27] |
Lednicer, D. Strategies for Organic Drug Synthesis and Design, John Wiley & Sons, Inc., Hoboken, 2008.
|
[28] |
(a) Gibe, R.; Kerr, M. A. J. Org. Chem. 2002, 67, 6274.
|
(b) Li, Z.; Shi, Z.; He, C. J. Organomet. Chem. 2005, 690, 5049.
doi: 10.1016/j.jorganchem.2005.03.009 |
|
[29] |
James, M. J.; Strieth-Kalthoff, F.; Sandfort, F.; Klauck, F.; Wagener, F.; Glorius, F. Chem.-Eur. J. 2019, 25, 8240.
doi: 10.1002/chem.201901397 |
[30] |
Ciszewski, Ł. W.; Durka, J.; Gryko, D. Org. Lett. 2019, 21, 7028.
doi: 10.1021/acs.orglett.9b02612 pmid: 31424220 |
[31] |
Bhattacharjee, S.; Laru, S.; Samanta, S.; Singsardar, M.; Hajra, A. RSC Adv. 2020, 10, 27984.
doi: 10.1039/d0ra05795a pmid: 35519122 |
[32] |
(a) Dömling, A.; Wang, W.; Wang, K.; Chem. Rev. 2012, 112, 3083.
doi: 10.1021/cr100233r |
(b) Zhi, S.-J.; Ma, X.-M.; Zheng, W. Org. Biomol. Chem. 2019, 17, 7632.
doi: 10.1039/C9OB00772E |
|
(c) Lu, F.-D.; He, G.-F.; Lu, L.-Q.; Xiao, W.-J. Green. Chem. 2021, 23, 5379.
doi: 10.1039/D1GC00993A |
|
[33] |
Xia, Y.; Qiu, D.; Wang, J.-B. Chem. Rev. 2017, 117, 13810.
doi: 10.1021/acs.chemrev.7b00382 |
[34] |
Guo, X.; Hu, W.-H. Acc. Chem. Res. 2013, 46, 2427.
doi: 10.1021/ar300340k |
[35] |
Su, Y.-L.; Liu, G.-X.; Liu, J.-W.; Tram, L.; Qiu, H.; Doyle, M. P. J. Am. Chem. Soc. 2020, 142, 13846.
doi: 10.1021/jacs.0c05183 |
[36] |
Su, Y.-L.; Liu, G.-X.; Angelis, L. D.; He, R.; Al-Sayyed, A.; Schanze, K. S.; Hu, W.-H.; Qiu, H.; Doyle, M. P. ACS Catal. 2022, 12, 1357.
doi: 10.1021/acscatal.1c05611 |
[37] |
Jiang, J.-W.; Liu, J.-J.; Yang, L.; Shao, Y.; Cheng, J.; Bao, X.-G.; Wan, X.-B.; Chem. Commun. 2015, 51, 14728.
doi: 10.1039/C5CC05183E |
[38] |
Ma, N.; Guo, L.; Qi, D.; Gao, F.; Yang, C.; Xia, W.-J. Org. Lett. 2021, 23, 6278.
doi: 10.1021/acs.orglett.1c02071 |
[39] |
Liu, G.-X.; Liang, H.-C.; Fu, X.; Tang, J.; Hu, W.-H.; Qiu, H. Org. Lett. 2022, 24, 4908.
doi: 10.1021/acs.orglett.2c01751 |
[40] |
Zhang, B.; Qi, J.-Q.; Liu, Y.-H.; Li, Z.-P.; Wang, J. Org. Lett. 2022, 24, 279.
doi: 10.1021/acs.orglett.1c03941 |
[41] |
(a) Baumgartner, T.; Réau, R. Chem. Rev. 2006, 106, 4681.
doi: 10.1021/cr040179m pmid: 17091932 |
(b) Baumgartner, T. Acc. Chem. Res. 2014, 47, 1613.
doi: 10.1021/ar500084b pmid: 17091932 |
|
(c) Joly, D.; Bouit, P.-A.; Hissler, M. J. Mater. Chem. C 2016, 4, 3686.
doi: 10.1039/C6TC00590J pmid: 17091932 |
|
[42] |
(a) Clevenger, A. L.; Stolley, R. M.; Aderibigbe, J.; Louie, J. Chem. Rev. 2020, 120, 6124.
doi: 10.1021/acs.chemrev.9b00682 pmid: 32491839 |
(b) Pan, D.; Nie, G.; Jiang, S.; Li, T.; Jin, Z. Org. Chem. Front. 2020, 7, 2349.
doi: 10.1039/D0QO00473A pmid: 32491839 |
|
(c) Maddigan-Wyatt, J.; Hooper, J. F. Adv. Synth. Catal. 2021, 363, 924.
doi: 10.1002/adsc.202001397 pmid: 32491839 |
|
[43] |
Jiang, H.; Jin, H.; Abdukader, A.; Lin, A.; Cheng, Y.; Zhu, C. Org. Biomol. Chem. 2013, 11, 3612.
doi: 10.1039/c3ob40429c |
[44] |
(a) Wang, L.; Wu, Y.; Liu, Y.; Yang, H.; Liu, X.; Wang, J.; Li, X.; Jiang, J. Org. Lett. 2017, 19, 782.
doi: 10.1021/acs.orglett.6b03752 |
(b) Gu, X.; Xie, P.; Jiang, J.; Wu, Y.; Wang, L. J. Chem. Res. 2018, 42, 63.
doi: 10.3184/174751918X15177590137425 |
|
[45] |
Zhou, H.-Y.; Wang, G.-G.; Wang, C.-H.; Yang, J.-Y. Org. Lett. 2022, 24, 1530.
doi: 10.1021/acs.orglett.2c00198 |
[46] |
Kornblum, N.; DeLaMare, H. E. J. Am. Chem. Soc. 1951, 73, 880.
|
[47] |
Li, F.; Zhu, S.-Q.; Koenigs, R. M. Chem. Commun. 2022, 58, 7526.
doi: 10.1039/D2CC02414D |
[48] |
Wang, X.-Y.; Tong, W.-Y.; Huang, B.; Cao, S.; Li, Y.-L.; Jiao, J.-C.; Huang, H.; Yi, Q.; Qu, S.-L.; Wang, X. J. Am. Chem. Soc. 2022, 144, 4952.
doi: 10.1021/jacs.1c12874 |
[49] |
Li, W.-Y.; Zhou, L. Org. Lett. 2022, 24, 3976.
doi: 10.1021/acs.orglett.2c01366 |
[50] |
(a) Li, W.-Y.; Zhou, X.-Y.; Xiao, T.-B.; Ke, Z.-F.; Zhou, L. CCS Chem. 2022, 4, 638.
doi: 10.31635/ccschem.021.202000713 |
(b) Li, W.-Y.; Zhou, L. Green Chem. 2021, 23, 6652.
doi: 10.1039/D1GC02036F |
[1] | Jiyu Liu, Shengyu Li, Kuan Chen, Yin Zhu, Yuan Zhang. Triphenylamine-Based Ordered Mesoporous Polymer as a Metal-Free Photocatalyst for Oxidation of Thiols to Disulfide [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 605-612. |
[2] | Yanshuo Zhu, Hongyan Wang, Penghua Shu, Ke'na Zhang, Qilin Wang. Recent Advances on Alkoxy Radicals-Mediated C(sp3)—H Bond Functionalization via 1,5-Hydrogen Atom Transfer [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 1-17. |
[3] | Yukun Jin, Baoyi Ren, Fushun Liang. Visible Light-Mediated Selective C—F Bond Cleavage of Trifluoromethyl Groups and Its Application in Synthesizing gem-Difluoro-Containing Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 85-110. |
[4] | Hong'en Tong, Hongyu Guo, Rong Zhou. Progress on Visible-Light Promoted Addition Reactions of Inert C—H Bonds to Carbonyls [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 54-69. |
[5] | Jiantao Zhang, Cong Zhang, Nuolin Mo, Jiating Luo, Lianfen Chen, Weibing Liu. Research Progress in Radical Addition Reaction of Alkenes Involving Chloroform [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3098-3106. |
[6] | Wei Xu, Hongbin Zhai, Bin Cheng, Taimin Wang. Visible Light-Induced Pd-Catalyzed Heck Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3035-3054. |
[7] | Sijie Fan, Wuheng Dong, Caiyun Liang, Guichao Wang, Yao Yuan, Zuodong Yin, Zhaoguo Zhang. Visible Light-Induced Radical Cyclization for the Construction of 4-Aryl-1,2-dihydronaphthalenes [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3277-3286. |
[8] | Yu Zhao, Kai Zhang, Yubin Bai, Yantu Zhang, Shihui Shi. A Metal-Free Photocatalytic Hydrosilylation of Alkenes Using Bromide Salt as a Hydrogen Atom Transfer Reagent [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2837-2847. |
[9] | Chunming Gui, Tongyao Zhou, Haifeng Wang, Qiongjiao Yan, Wei Wang, Jin Huang, Fener Chen. Recent Advances in Visible Light Photoredox-Catalyzed Alkynylation [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2647-2663. |
[10] | Yingke Feng, He Wang, Mengxing Cui, Ran Sun, Xin Wang, Yang Chen, Lei Li. Visible-Light-Induced Difluoroalkylated Cyclization of Novel Functionalized Aromatic Isocyanides [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2913-2925. |
[11] | Xiaona Yang, Hongyu Guo, Rong Zhou. Progress in Visible-Light Promoted Transformations of Organosilicon Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2720-2742. |
[12] | Fen Huang, Weiwei Luo, Jun Zhou. Research Progress of Polychloroalkylation Based on C—H Bond Cleavage [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2368-2390. |
[13] | Yu Tian, Juan Zhang, Wenchao Gao, Honghong Chang. Application of Dimethyl Sulfoxide as Methylating Reagent in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2391-2406. |
[14] | Xiaoping Xu, Yifei Zhang, Xiaoyu Mo, Jun Jiang. Rh-Catalyzed C—H Functionalization Reaction between 3-Diazoindolin-2-imines and Pyrazolones for the Construction of 3-Pyrazolyl Indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2519-2527. |
[15] | Jiamin Ma, Jiaoxiong Li, Qiansen Meng, Xianghua Zeng. Advances on the Radical Sulfonation of Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2040-2052. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||