Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (9): 2617-2639.DOI: 10.6023/cjoc202401011 Previous Articles     Next Articles

REVIEWS

手性亚胺有机分子笼的合成及应用研究

陈璐怡a, 谭梦霞a, 金迦南a, 张子彬a, 黄飞鹤b,c, 李世军a,*(), 李云霞a,*()   

  1. a 杭州师范大学材料与化学化工学院 有机硅化学及材料技术教育部重点实验室 杭州 311121
    b 浙江大学化学系 司徒塔特分子科学研究院 杭州 310058
    c 浙江大学杭州国际科创中心 浙江-以色列自组装功能材料联合实验室 杭州 311215
  • 收稿日期:2024-01-12 修回日期:2024-03-18 发布日期:2024-04-10
  • 通讯作者: 李世军, 李云霞
  • 基金资助:
    国家自然科学基金(21773052); 国家自然科学基金(22071040); 浙江省自然科学基金(LZ24B020005)

Synthesis and Application of Chiral Organic Imine Molecular Cages

Luyi Chena, Mengxia Tana, Jia'nan Jina, Zibin Zhanga, Feihe Huangb,c, Shijun Lia(), Yunxia Lia()   

  1. a College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121
    b Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058
    c Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215
  • Received:2024-01-12 Revised:2024-03-18 Published:2024-04-10
  • Contact: Shijun Li, Yunxia Li
  • Supported by:
    National Natural Science Foundation of China(21773052); National Natural Science Foundation of China(22071040); Natural Science Foundation of Zhejiang Province(LZ24B020005)

As a kind of novel porous materials, porous organic molecular cages (POCs) exhibit excellent properties in the field of molecular recognition, gas storage and separation, catalysis and sensing. Moreover, their good solubilities make them easily fabricate composite materials to obtain more complicated structures and interesting performances. As one of main family members of POCs, organic imine molecular cages based on dynamic imine bonds have been extensively studied. Among them, chiral organic imine molecular cages have exhibited the wide applications of POCs in the fields such as chiral recognition, enantiomer separation, asymmetric catalysis, and so on. In order to provide a comprehensive overview of the synthesis and applications of chiral organic imine molecular cages, three effective synthetic strategies of chiral organic imine molecular cages, including direct synthesis by using enantiopure chiral building blocks, chiral assembly with achiral building blocks under the effect of symmetry breaking, and chiral self-sorting assembly with racemic building blocks, are summarized. The recent progresses of the applications of chiral organic molecular imine cages in the fields of chiral molecular recognition, chiral chromatographic separation and asymmetric catalysis are also briefly retrospected.

Key words: porous organic molecular cage, chirality, imine, synthetic strategy, self-assembly