Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (11): 3282-3298.DOI: 10.6023/cjoc202403026 Previous Articles Next Articles
REVIEW
涂开槐a,b,c, 江雪a,b,c, 段泰男b,c,*(), 肖泽云b,c
收稿日期:
2024-03-19
修回日期:
2024-05-08
发布日期:
2024-05-30
Kaihuai Tua,b,c, Xue Jianga,b,c, Tainan Duanb,c,*(), Zeyun Xiaob,c
Received:
2024-03-19
Revised:
2024-05-08
Published:
2024-05-30
Contact:
*E-mail:Share
Kaihuai Tu, Xue Jiang, Tainan Duan, Zeyun Xiao. Research Progress in High-Performance Organic Small-Molecule Photovoltaic Donors Materials[J]. Chinese Journal of Organic Chemistry, 2024, 44(11): 3282-3298.
Donor | HOMO/LUMO/eV | Acceptor | PCE/% | Ref. | Donor | HOMO/LUMO/eV | Acceptor | PCE/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
DCV5T | -5.61/-3.74 | C60 | 3.47 | [ | PTTCNR | -5.17/-3.63 | PC71BM | 8.21 | [ |
1 | -5.60/-3.75 | C60 | 3.09 | [ | ZnP-TBO | -5.18/-3.81 | 6TIC | 12.08 | [ |
2 | -5.63/-3.80 | C60 | 2.93 | ZnP-TBO | -5.18/-3.81 | 6TIC:4TIC | 14.73 | [ | |
3 | -5.58/-3.80 | C60 | 2.53 | ZnP-TSEH | -5.20/-3.82 | 6TIC:4TIC | 15.88 | ||
T3 | -5.26/-3.58 | PC71BM | 6.15 | [ | ZnP-TSEH | -5.20/-3.82 | 6TIC:4TIC | 17.18 | [ |
DCN7T | -5.1/-3.4 | PC61BM | 3.7 | [ | DR3TBDT | -5.02/-3.27 | PC71BM | 7.38 | [ |
DCAO7T | -5.13/-3.26 | PC61BM | 5.08 | [ | DR3TBDTT | -5.02/-3.27 | PC71BM | 8.12 | |
DERHD7T | -5.21/-3.68 | PC61BM | 6.1 | [ | DR3TBDTT-HD | -5.06/-3.29 | PC71BM | 6.79 | |
DERHD7T | -5.21/-3.68 | PC71BM | 4.35 | [ | DR3TBDT2T | -5.07/-3.29 | PC71BM | 8.02 | |
DRCN7T | -5.08/-3.44 | PC71BM | 9.3 | SBDT-BDD | -5.25/-3.55 | IDIC | 9.2 | [ | |
DRCN5T | -5.22/-3.41 | PC71BM | 10.08 | [ | SBDT-BDD | -5.25/-3.55 | IDIC:PC71BM | 10.9 | |
DRCN5T | -5.32/-3.63 | F-0Cl | 5.49 | [ | DRTB-FT | -5.64/-3.61 | F-2Cl | 7.66 | [ |
DRCN5T | -5.32/-3.63 | F-1Cl | 8.12 | DRTB-T | -5.51/-3.34 | F-2Cl | 10.76 | ||
DRCN5T | -5.32/-3.63 | F-2Cl | 9.89 | BTEHR-CT | -5.56/-3.47 | F-2Cl | 11.13 | [ | |
DRCN7T | -5.08/-3.44 | Y6 | 2.48 | [ | BTEHR-CT | -5.56/-3.47 | F-2Cl:PC71BM | 12.05 | |
2F7T | -5.29/-3.61 | Y6 | 9.41 | BSFTR | -5.28/-3.19 | NBDTP-Fout | 12.26 | [ | |
2Cl7T | -5.39/-3.64 | Y6 | 11.45 | BSFTR | -5.28/-3.19 | FO-2Cl | 15.27 | [ | |
2Cl7T | -5.33/-3.59 | eC9-4F | 12.55 | [ | BSFTR | -5.28/-3.19 | FO-EH-2Cl | 15.78 | |
Tz6T | -5.35/-3.65 | eC9-4F | 15.38 | BTR | -5.34/-3.53 | PC71BM | 9.3 | [ | |
Tz6T | -5.35/-3.65 | eC9-4F | 16.0 | [ | BTR | -5.34/-3.53 | Y6 | 10.67 | [ |
Tz6T-P | -5.37/-3.76 | eC9-4F | 14.7 | [ | BTR-Cl | -5.46/-3.70 | Y6 | 13.61 | |
Tz6T-iP | -5.29/-3.64 | eC9-4F | 15.7 | BTR-Cl | -5.42/-3.70 | Y6 | 13.81 | [ | |
4 | -5.28/-3.68 | PC61BM | 4.8 | [ | BTR-Cl | -5.42/-3.70 | Y6 | 15.34 | |
5 | -5.28/-3.64 | PC61BM | 5.6 | SMDPP | -5.12/-3.72 | 1.73 | [ | ||
6 | -5.27/-3.67 | PC61BM | 4.6 | S-SMDPP | -5.16/-3.72 | 2.52 | |||
7 | -5.30/-3.75 | PC61BM | 4.4 | SF-SMDPP | -5.18/-3.72 | 2.04 | |||
8 | -5.31/-3.75 | PC61BM | 6.1 | B1 | -5.37/-3.51 | BO-4Cl | 15.3 | [ | |
9 | -5.30/-3.73 | PC61BM | 6.1 | B1 | -5.37/-3.51 | BO-4Cl:L8-BO | 17.10 | [ | |
9 | -5.30/-3.73 | PC71BM | 7.1 | [ | TB | -5.28/-2.76 | L8-BO | 15.8 | [ |
8 | -5.31/-3.75 | PC71BM | 7.63 | [ | TB-F | -5.31/-2.80 | L8-BO | 17 | |
10 | -5.25/-3.78 | PC71BM | 8.22 | T4 | -5.22/-3.52 | N3 | 12.61 | [ | |
9 | -5.30/-3.73 | PC71BM | 7.74 | [ | T6 | -5.35/-3.53 | N3 | 16.03 | |
11 | -5.28/-3.70 | PC71BM | 8.16 | [ | SW1 | -5.42/-3.43 | Y6 | 12.90 | [ |
12 | -5.33/-4.08 | 4.21 | [ | SW2 | -5.47/-3.45 | Y6 | 15.51 | ||
13 | -5.30/-4.03 | 2.74 | [ | BO-1 | -5.30/-3.51 | BTP-eC9 | 16.79 | [ | |
14 | -5.32/-4.06 | 3.34 | [ | HD-1 | -5.31/-3.46 | BTP-eC9 | 17.19 | ||
15 | — | 5.2 | [ | OD-1 | -5.36/-3.48 | BTP-eC9 | 15.18 | ||
DTS(PTTh2)2 | -5.2/-3.6 | PC70BM | 6.7 | [ | HD-1 | -5.31/-3.46 | BTP-eC9 | 17.73 | [ |
p-DTS(FBTTh2)2 | -5.1/-3.3 | PDI | 3.1 | [ | DTBDT-Rho | -5.11/-3.14 | PC71BM | 7.1 | [ |
L-MDPBI | -5.20/-3.61 | 1.70 | [ | ZR1 | -5.32/-3.53 | Y6 | 14.34 | [ | |
F-MDPBI | -5.30/-3.59 | 4.89 | ZR1 | -5.32/-3.53 | IDIC-4Cl | 9.64 | |||
G17:D18-Cl | -5.39/-3.60 | Y6 | 17.13 | [ | ZR1-Cl | -5.50/-3.60 | IDIC-4Cl | 10.81 | [ |
G19:D18-Cl | -5.30/-3.53 | Y6 | 18.53 | ZR1-S-Cl | -5.56/-3.60 | IDIC-4Cl | 12.05 | ||
DHTBTEZP | -5.2/-3.9 | PC71BM | 4.02 | [ | MPhS-C2 | -5.35/-3.45 | BTP-eC9 | 16.97 | [ |
Por-1(DHTBTEZP) | -5.2/-3.9 | PC71BM | 4.15 | [ | MPhS-C4 | -5.39/-3.45 | BTP-eC9 | 15.63 | |
Por-2 | -5.18/-3.39 | PC61BM | 4.78 | MPhS-C6 | -5.35/-3.43 | BTP-eC9 | 16.05 | ||
DPPEZnP-O | -5.07/-3.60 | PC61BM | 7.23 | [ | MPhS-C2 | -5.35/-3.45 | SSe-NIC | 16.83 | [ |
DPPEZnP-TEH | -5.14/-3.76 | PC61BM | 8.08 | [ | MPhS-C2 | -5.35/-3.45 | BTP-eC9:SSe-NIC | 18.02 | |
4a | -5.19/-3.59 | PC71BM | 3.21 | [ | FBD-S1 | -5.43/-3.52 | Y6 | 11.5 | [ |
4b | -5.15/-3.60 | PC71BM | 5.07 | TBD-S2 | -5.41/-3.50 | Y6 | 13.1 | ||
4c | -5.12/-3.52 | PC71BM | 7.7 | FBD-S3 | -5.29/-3.13 | Y6 | 12.53 | [ | |
PTTR | -5.14/-3.56 | PC71BM | 7.66 | [ | TBD-S4 | -5.31/-3.14 | Y6 | 15.1 |
Donor | HOMO/LUMO/eV | Acceptor | PCE/% | Ref. | Donor | HOMO/LUMO/eV | Acceptor | PCE/% | Ref. |
---|---|---|---|---|---|---|---|---|---|
DCV5T | -5.61/-3.74 | C60 | 3.47 | [ | PTTCNR | -5.17/-3.63 | PC71BM | 8.21 | [ |
1 | -5.60/-3.75 | C60 | 3.09 | [ | ZnP-TBO | -5.18/-3.81 | 6TIC | 12.08 | [ |
2 | -5.63/-3.80 | C60 | 2.93 | ZnP-TBO | -5.18/-3.81 | 6TIC:4TIC | 14.73 | [ | |
3 | -5.58/-3.80 | C60 | 2.53 | ZnP-TSEH | -5.20/-3.82 | 6TIC:4TIC | 15.88 | ||
T3 | -5.26/-3.58 | PC71BM | 6.15 | [ | ZnP-TSEH | -5.20/-3.82 | 6TIC:4TIC | 17.18 | [ |
DCN7T | -5.1/-3.4 | PC61BM | 3.7 | [ | DR3TBDT | -5.02/-3.27 | PC71BM | 7.38 | [ |
DCAO7T | -5.13/-3.26 | PC61BM | 5.08 | [ | DR3TBDTT | -5.02/-3.27 | PC71BM | 8.12 | |
DERHD7T | -5.21/-3.68 | PC61BM | 6.1 | [ | DR3TBDTT-HD | -5.06/-3.29 | PC71BM | 6.79 | |
DERHD7T | -5.21/-3.68 | PC71BM | 4.35 | [ | DR3TBDT2T | -5.07/-3.29 | PC71BM | 8.02 | |
DRCN7T | -5.08/-3.44 | PC71BM | 9.3 | SBDT-BDD | -5.25/-3.55 | IDIC | 9.2 | [ | |
DRCN5T | -5.22/-3.41 | PC71BM | 10.08 | [ | SBDT-BDD | -5.25/-3.55 | IDIC:PC71BM | 10.9 | |
DRCN5T | -5.32/-3.63 | F-0Cl | 5.49 | [ | DRTB-FT | -5.64/-3.61 | F-2Cl | 7.66 | [ |
DRCN5T | -5.32/-3.63 | F-1Cl | 8.12 | DRTB-T | -5.51/-3.34 | F-2Cl | 10.76 | ||
DRCN5T | -5.32/-3.63 | F-2Cl | 9.89 | BTEHR-CT | -5.56/-3.47 | F-2Cl | 11.13 | [ | |
DRCN7T | -5.08/-3.44 | Y6 | 2.48 | [ | BTEHR-CT | -5.56/-3.47 | F-2Cl:PC71BM | 12.05 | |
2F7T | -5.29/-3.61 | Y6 | 9.41 | BSFTR | -5.28/-3.19 | NBDTP-Fout | 12.26 | [ | |
2Cl7T | -5.39/-3.64 | Y6 | 11.45 | BSFTR | -5.28/-3.19 | FO-2Cl | 15.27 | [ | |
2Cl7T | -5.33/-3.59 | eC9-4F | 12.55 | [ | BSFTR | -5.28/-3.19 | FO-EH-2Cl | 15.78 | |
Tz6T | -5.35/-3.65 | eC9-4F | 15.38 | BTR | -5.34/-3.53 | PC71BM | 9.3 | [ | |
Tz6T | -5.35/-3.65 | eC9-4F | 16.0 | [ | BTR | -5.34/-3.53 | Y6 | 10.67 | [ |
Tz6T-P | -5.37/-3.76 | eC9-4F | 14.7 | [ | BTR-Cl | -5.46/-3.70 | Y6 | 13.61 | |
Tz6T-iP | -5.29/-3.64 | eC9-4F | 15.7 | BTR-Cl | -5.42/-3.70 | Y6 | 13.81 | [ | |
4 | -5.28/-3.68 | PC61BM | 4.8 | [ | BTR-Cl | -5.42/-3.70 | Y6 | 15.34 | |
5 | -5.28/-3.64 | PC61BM | 5.6 | SMDPP | -5.12/-3.72 | 1.73 | [ | ||
6 | -5.27/-3.67 | PC61BM | 4.6 | S-SMDPP | -5.16/-3.72 | 2.52 | |||
7 | -5.30/-3.75 | PC61BM | 4.4 | SF-SMDPP | -5.18/-3.72 | 2.04 | |||
8 | -5.31/-3.75 | PC61BM | 6.1 | B1 | -5.37/-3.51 | BO-4Cl | 15.3 | [ | |
9 | -5.30/-3.73 | PC61BM | 6.1 | B1 | -5.37/-3.51 | BO-4Cl:L8-BO | 17.10 | [ | |
9 | -5.30/-3.73 | PC71BM | 7.1 | [ | TB | -5.28/-2.76 | L8-BO | 15.8 | [ |
8 | -5.31/-3.75 | PC71BM | 7.63 | [ | TB-F | -5.31/-2.80 | L8-BO | 17 | |
10 | -5.25/-3.78 | PC71BM | 8.22 | T4 | -5.22/-3.52 | N3 | 12.61 | [ | |
9 | -5.30/-3.73 | PC71BM | 7.74 | [ | T6 | -5.35/-3.53 | N3 | 16.03 | |
11 | -5.28/-3.70 | PC71BM | 8.16 | [ | SW1 | -5.42/-3.43 | Y6 | 12.90 | [ |
12 | -5.33/-4.08 | 4.21 | [ | SW2 | -5.47/-3.45 | Y6 | 15.51 | ||
13 | -5.30/-4.03 | 2.74 | [ | BO-1 | -5.30/-3.51 | BTP-eC9 | 16.79 | [ | |
14 | -5.32/-4.06 | 3.34 | [ | HD-1 | -5.31/-3.46 | BTP-eC9 | 17.19 | ||
15 | — | 5.2 | [ | OD-1 | -5.36/-3.48 | BTP-eC9 | 15.18 | ||
DTS(PTTh2)2 | -5.2/-3.6 | PC70BM | 6.7 | [ | HD-1 | -5.31/-3.46 | BTP-eC9 | 17.73 | [ |
p-DTS(FBTTh2)2 | -5.1/-3.3 | PDI | 3.1 | [ | DTBDT-Rho | -5.11/-3.14 | PC71BM | 7.1 | [ |
L-MDPBI | -5.20/-3.61 | 1.70 | [ | ZR1 | -5.32/-3.53 | Y6 | 14.34 | [ | |
F-MDPBI | -5.30/-3.59 | 4.89 | ZR1 | -5.32/-3.53 | IDIC-4Cl | 9.64 | |||
G17:D18-Cl | -5.39/-3.60 | Y6 | 17.13 | [ | ZR1-Cl | -5.50/-3.60 | IDIC-4Cl | 10.81 | [ |
G19:D18-Cl | -5.30/-3.53 | Y6 | 18.53 | ZR1-S-Cl | -5.56/-3.60 | IDIC-4Cl | 12.05 | ||
DHTBTEZP | -5.2/-3.9 | PC71BM | 4.02 | [ | MPhS-C2 | -5.35/-3.45 | BTP-eC9 | 16.97 | [ |
Por-1(DHTBTEZP) | -5.2/-3.9 | PC71BM | 4.15 | [ | MPhS-C4 | -5.39/-3.45 | BTP-eC9 | 15.63 | |
Por-2 | -5.18/-3.39 | PC61BM | 4.78 | MPhS-C6 | -5.35/-3.43 | BTP-eC9 | 16.05 | ||
DPPEZnP-O | -5.07/-3.60 | PC61BM | 7.23 | [ | MPhS-C2 | -5.35/-3.45 | SSe-NIC | 16.83 | [ |
DPPEZnP-TEH | -5.14/-3.76 | PC61BM | 8.08 | [ | MPhS-C2 | -5.35/-3.45 | BTP-eC9:SSe-NIC | 18.02 | |
4a | -5.19/-3.59 | PC71BM | 3.21 | [ | FBD-S1 | -5.43/-3.52 | Y6 | 11.5 | [ |
4b | -5.15/-3.60 | PC71BM | 5.07 | TBD-S2 | -5.41/-3.50 | Y6 | 13.1 | ||
4c | -5.12/-3.52 | PC71BM | 7.7 | FBD-S3 | -5.29/-3.13 | Y6 | 12.53 | [ | |
PTTR | -5.14/-3.56 | PC71BM | 7.66 | [ | TBD-S4 | -5.31/-3.14 | Y6 | 15.1 |
[1] |
Meyer F. Prog. Polym. Sci. 2015, 47, 70.
|
[2] |
Lewis N. S. Science 2007, 315, 798.
|
[3] |
Cheng P.; Li G.; Zhan X.; Yang Y. Nat. Photonics 2018, 12, 131.
|
[4] |
Krebs F. C.; Espinosa N.; Hosel M.; Sondergaard R. R.; Jorgensen M. Adv. Mater. 2014, 26, 29.
|
[5] |
Chapin D. M.; Fuller C. S.; Pearson G. L. J. Appl. Phys. 1954, 25, 676.
|
[6] |
Zhang J.; Tan H. S.; Guo X.; Facchetti A.; Yan H. Nat. Energy 2018, 3, 720.
|
[7] |
Huang Y.; Kramer E. J.; Heeger A. J.; Bazan G. C. Chem. Rev. 2014, 114, 7006.
doi: 10.1021/cr400353v pmid: 24869423 |
[8] |
Yao H.; Ye L.; Zhang H.; Li S.; Zhang S.; Hou J. Chem. Rev. 2016, 116, 7397.
|
[9] |
Guenes S.; Neugebauer H.; Sariciftci N. S. Chem. Rev. 2007, 107, 1324.
|
[10] |
Li G.; Zhu R.; Yang Y. Nat. Photonics 2012, 6, 153.
|
[11] |
Lu L.; Zheng T.; Wu Q.; Schneider A. M.; Zhao D.; Yu L. Chem. Rev. 2015, 115, 12666.
|
[12] |
Li G.; Chang W.-H.; Yang Y. Nat. Rev. Mater. 2017, 2, 17043.
|
[13] |
Cheng Y.-J.; Yang S.-H.; Hsu C.-S. Chem. Rev. 2009, 109, 5868.
|
[14] |
Sondergaard R.; Hosel M.; Angmo D.; Larsen-Olsen T. T.; Krebs F. C. Mater. Today 2012, 15, 36.
|
[15] |
Kaltenbrunner M.; White M. S.; Glowacki E. D.; Sekitani T.; Someya T.; Sariciftci N. S.; Bauer S. Nat. Commun. 2012, 3, 770.
doi: 10.1038/ncomms1772 pmid: 22473014 |
[16] |
Qin F.; Wang W.; Sun L.; Jiang X.; Hu L.; Xiong S.; Liu T.; Dong X.; Li J.; Jiang Y.; Hou J.; Fukuda K.; Someya T.; Zhou Y. Nat. Commun. 2020, 11, 4508.
|
[17] |
Mathews I.; Kantareddy S. N.; Buonassisi T.; Peters I. M. Joule 2019, 3, 1415.
doi: 10.1016/j.joule.2019.03.026 |
[18] |
Zhang Y.; Liu D. L.; Lau T. K.; Zhan L. L.; Shen D.; Fong P. W. K.; Yan C. Q.; Zhang S. Q.; Lu X. H.; Lee C. S.; Hou J. H.; Chen H. Z.; Li G. Adv. Funct. Mater. 2020, 30, 1910466.
|
[19] |
Jia Z.; Qin S.; Meng L.; Ma Q.; Angunawela I.; Zhang J.; Li X.; He Y.; Lai W.; Li N.; Ade H.; Brabec C. J.; Li Y. Nat. Commun. 2021, 12, 178.
|
[20] |
Lipomi D. J.; Tee B. C. K.; Vosgueritchian M.; Bao Z. Adv. Mater. 2011, 23, 1771.
|
[21] |
Yim J. H.; Joe S.-y.; Pang C.; Lee K. M.; Jeong H.; Park J.-Y.; Ahn Y. H.; de Mello J. C.; Lee S. ACS Nano 2014, 8, 2857.
|
[22] |
Chang S.-Y.; Cheng P.; Li G.; Yang Y. Joule 2018, 2, 1039.
|
[23] |
Inganaes O. Adv. Mater. 2018, 30, 1800388.
|
[24] |
Sun C.; Xia R.; Shi H.; Yao H.; Liu X.; Hou J.; Huang F.; Yip H.-L.; Cao Y. Joule 2018, 2, 1816.
|
[25] |
Duan T.; Chen Q.; Hu D.; Lv J.; Yu D.; Li G.; Lu S. Trends Chem. 2022, 4, 773.
|
[26] |
Yu G.; Gao J.; Hummelen J. C.; Wudl F.; Heeger A. J. Science 1995, 270, 1789.
|
[27] |
Schubert M.; Dolfen D.; Frisch J.; Roland S.; Steyrleuthner R.; Stiller B.; Chen Z.; Scherf U.; Koch N.; Facchetti A.; Neher D. Adv. Energy Mater. 2012, 2, 369.
|
[28] |
Liu Y.; Zhao J.; Li Z.; Mu C.; Ma W.; Hu H.; Jiang K.; Lin H.; Ade H.; Yan H. Nat. Commun. 2014, 5, 5293.
|
[29] |
Spanggaard H.; Krebs F. C. Sol. Energy Mater. Sol. Cells 2004, 83, 125.
|
[30] |
Liang R.-Z.; Zhang Y.; Savikhin V.; Babics M.; Kan Z.; Wohlfahrt M.; Wehbe N.; Liu S.; Duan T.; Toney M. F.; Laquai F.; Beaujuge P. M. Adv. Energy Mater. 2019, 9, 1802836.
|
[31] |
Xu X. P.; Feng K.; Bi Z. Z.; Ma W.; Zhang G. J.; Peng Q. Adv. Mater. 2019, 31, 1901872.
|
[32] |
Zhang T.; An C.; Bi P.; Lv Q.; Qin J.; Hong L.; Cui Y.; Zhang S.; Hou J. Adv. Energy Mater. 2021, 11, 2101705.
|
[33] |
Kyaw A. K. K.; Wang D. H.; Gupta V.; Zhang J.; Chand S.; Bazan G. C.; Heeger A. J. Adv. Mater. 2013, 25, 2397.
|
[34] |
Cui C.; Guo X.; Min J.; Guo B.; Cheng X.; Zhang M.; Brabec C. J.; Li Y. Adv. Mater. 2015, 27, 7469.
|
[35] |
Gao K.; Li L.; Lai T.; Xiao L.; Huang Y.; Huang F.; Peng J.; Cao Y.; Liu F.; Russell T. P.; Janssen R. A. J.; Peng X. J. Am. Chem. Soc. 2015, 137, 7282.
doi: 10.1021/jacs.5b03740 pmid: 26035342 |
[36] |
Zhang Q.; Sun Y. N.; Chen X. J.; Lin Z. J.; Ke X.; Wang X. Y.; He T.; Yin S. C.; Chen Y. S.; Qiu H. Y. J. Mater. Chem. C 2019, 7, 5381.
doi: 10.1039/c9tc01251f |
[37] |
Lin Y.; Zhan X. Acc. Chem. Res. 2016, 49, 175.
|
[38] |
Huo Y.; Zhang H.-L.; Zhan X. ACS Energy Lett. 2019, 4, 1241.
|
[39] |
Wu J.; Li G.; Fang J.; Guo X.; Zhu L.; Guo B.; Wang Y.; Zhang G.; Arunagiri L.; Liu F.; Yan H.; Zhang M.; Li Y. Nat. Commun. 2020, 11, 4612.
|
[40] |
Liu Q. S.; Jiang Y. F.; Jin K.; Qin J. Q.; Xu J. G.; Li W. T.; Xiong J.; Liu J. F.; Xiao Z.; Sun K.; Yang S. F.; Zhang X. T.; Ding L. M. Sci. Bull. 2020, 65, 272.
|
[41] |
Chen S.; Feng L.; Jia T.; Jing J.; Hu Z.; Zhang K.; Huang F. Sci. China: Chem. 2021, 64, 1192.
|
[42] |
Li Z.; Wang X.; Zheng N.; Saparbaev A.; Zhang J.; Xiao C.; Lei S.; Zheng X.; Zhang M.; Li Y.; Xiao B.; Yang R. Energy Environ. Sci. 2022, 15, 4338.
|
[43] |
Gao Y.; Yang X.; Wang W.; Sun R.; Cui J.; Fu Y.; Li K.; Zhang M.; Liu C.; Zhu H.; Lu X.; Min J. Adv. Mater. 2023, 35, 2300531.
|
[44] |
Ma Y.; Zhou X.; Cai D.; Tu Q.; Ma W.; Zheng Q. Mater. Horiz. 2020, 7, 117.
|
[45] |
Xu X.; Feng K.; Lee Y. W.; Woo H. Y.; Zhang G.; Peng Q. Adv. Funct. Mater. 2020, 30, 1907570.
|
[46] |
Sun H.; Liu B.; Koh C. W.; Zhang Y.; Chen J.; Wang Y.; Chen P.; Tu B.; Su M.; Wang H.; Tang Y.; Shi Y.; Woo H. Y.; Guo X. Adv. Funct. Mater. 2019, 29, 1903970.
|
[47] |
Schulze K.; Uhrich C.; Schueppel R.; Leo K.; Pfeiffer M.; Brier E.; Reinold E.; Baeuerle P. Adv. Mater. 2006, 18, 2872.
|
[48] |
Haid S.; Mishra A.; Uhrich C.; Pfeiffer M.; Baeuerle P. Chem. Mater. 2011, 23, 4435.
|
[49] |
Liu Y.; Yang Y.; Chen C.-C.; Chen Q.; Dou L.; Hong Z.; Li G.; Yang Y. Adv. Mater. 2013, 25, 4657.
|
[50] |
Liu Y.; Zhou J.; Wan X.; Chen Y. Tetrahedron 2009, 65, 5209.
|
[51] |
Yin B.; Yang L.; Liu Y.; Chen Y.; Qi Q.; Zhang F.; Yin S. Appl. Phys. Lett. 2010, 97, 023303.
|
[52] |
Liu Y.; Wan X.; Wang F.; Zhou J.; Long G.; Tian J.; You J.; Yang Y.; Chen Y. Adv. Energy Mater. 2011, 1, 771.
|
[53] |
Li Z.; He G.; Wan X.; Liu Y.; Zhou J.; Long G.; Zuo Y.; Zhang M.; Chen Y. Adv. Energy Mater. 2012, 2, 74.
|
[54] |
Zhang Q.; Kan B.; Liu F.; Long G.; Wan X.; Chen X.; Zuo Y.; Ni W.; Zhang H.; Li M.; Hu Z.; Huang F.; Cao Y.; Liang Z.; Zhang M.; Russell T. P.; Chen Y. Nat. Photonics 2015, 9, 35.
|
[55] |
Kan B.; Li M.; Zhang Q.; Liu F.; Wan X.; Wang Y.; Ni W.; Long G.; Yang X.; Feng H.; Zuo Y.; Zhang M.; Huang F.; Cao Y.; Russell T. P.; Chen Y. J. Am. Chem. Soc. 2015, 137, 3886.
|
[56] |
Wang Y.; Wang Y.; Kan B.; Ke X.; Wan X.; Li C.; Chen Y. Adv. Energy Mater. 2018, 8, 1802021.
|
[57] |
Duan T.; Gao J.; Xu T.; Kan Z.; Chen W.; Singh R.; Kini G. P.; Zhong C.; Yu D.; Xiao Z.; Xiao Z.; Lu S. J. Mater. Chem. A 2020, 8, 5843.
|
[58] |
Duan T.; Chen Q.; Yang Q.; Hu D.; Cai G.; Lu X.; Lv J.; Song H.; Zhong C.; Liu F.; Yu D.; Lu S. J. Mater. Chem. A 2022, 10, 3009.
|
[59] |
Hu D.; Tang H.; Karuthedath S.; Chen Q.; Chen S.; Khan J. I. I.; Liu H.; Yang Q.; Gorenflot J.; Petoukhoff C. E. E.; Duan T.; Lu X.; Laquai F.; Lu S. Adv. Funct. Mater. 2023, 33, 2211873.
|
[60] |
Chen Q.; Li Y.; Hu D.; Lu S.; Xiao Z. Sol. RRL 2024, 8, 2300802.
|
[61] |
Wessendorf C. D.; Schulz G. L.; Mishra A.; Kar P.; Ata I.; Weidelener M.; Urdanpilleta M.; Hanisch J.; Mena-Osteritz E.; Linden M.; Ahlswede E.; Baeuerle P. Adv. Energy Mater. 2014, 4, 1400266.
|
[62] |
Wessendorf C. D.; Perez-Rodriguez A.; Hanisch J.; Arndt A. P.; Ata I.; Schulz G. L.; Quintilla A.; Baeuerle P.; Lemmer U.; Wochner P.; Ahlswede E.; Barrena E. J. Mater. Chem. A 2016, 4, 2571.
|
[63] |
Mishra A.; Rana T.; Looser A.; Stolte M.; Wuerthner F.; Baeuerle P.; Sharma G. D. J. Mater. Chem. A 2016, 4, 17344.
|
[64] |
Ben Dkhil S.; Pfannmoller M.; Ata I.; Duche D.; Gaceur M.; Koganezawa T.; Yoshimoto N.; Simon J.-J.; Escoubas L.; Videlot-Ackermann C.; Margeat O.; Bals S.; Bauerle P.; Ackermann J. J. Mater. Chem. A 2017, 5, 1005.
|
[65] |
Ata I.; Ben Dkhil S.; Pfannmoeller M.; Bals S.; Duche D.; Simon J.-J.; Koganezawa T.; Yoshimoto N.; Videlot-Ackermann C.; Margeat O.; Ackermann J.; Baeuerle P. Org. Chem. Front. 2017, 4, 1561.
|
[66] |
Lucas S.; Leydecker T.; Samori P.; Mena-Osteritz E.; Baeuerle P. Chem. Commun. 2019, 55, 14202.
|
[67] |
Lucas S.; Kammerer J.; Pfannmoeller M.; Schroeder R. R.; He Y.; Li N.; Brabec C. J.; Leydecker T.; Samori P.; Marszalek T.; Pisula W.; Mena-Osteritz E.; Baeuerle P. Sol. RRL 2021, 5, 2000653.
|
[68] |
Aubele A.; He Y.; Kraus T.; Li N.; Mena-Osteritz E.; Weitz P.; Heumueller T.; Zhang K.; Brabec C. J.; Baeuerle P. Adv. Mater. 2022, 34, 2103573.
|
[69] |
Sun Y.; Welch G. C.; Leong W. L.; Takacs C. J.; Bazan G. C.; Heeger A. J. Nat. Mater. 2012, 11, 44.
|
[70] |
Sharenko A.; Gehrig D.; Laquai F.; Thuc-Quyen N. Chem. Mater. 2014, 26, 4109.
|
[71] |
Xia D.; Zhou S.; Tan W. L.; Karuthedath S.; Xiao C.; Zhao C.; Laquai F.; McNeill C. R.; Li W. Aggregate 2023, 4, e279.
|
[72] |
Chen Z.; Song W.; Yu K.; Ge J.; Zhang J.; Xie L.; Peng R.; Ge Z. Joule 2021, 5, 2395.
|
[73] |
Huang Y.; Li L.; Peng X.; Peng J.; Cao Y. J. Mater. Chem. 2012, 22, 21841.
|
[74] |
Li L.; Huang Y.; Peng J.; Cao Y.; Peng X. J. Mater. Chem. A 2013, 1, 2144.
|
[75] |
Qin H.; Li L.; Guo F.; Su S.; Peng J.; Cao Y.; Peng X. Energy Environ. Sci. 2014, 7, 1397.
|
[76] |
Wang H.; Xiao L.; Yan L.; Chen S.; Zhu X.; Peng X.; Wang X.; Wong W.-K.; Wong W.-Y. Chem. Sci. 2016, 7, 4301.
|
[77] |
Xiao L.; Chen S.; Gao K.; Peng X.; Liu F.; Cao Y.; Wong W.-Y.; Wong W.-K.; Zhu X. ACS Appl. Mater. Interfaces 2016, 8, 30176.
|
[78] |
Gao K.; Miao J. S.; Xiao L. A.; Deng W. Y.; Kan Y. Y.; Liang T. X.; Wang C.; Huang F.; Peng J. B.; Cao Y.; Liu F.; Russell T. P.; Wu H. B.; Peng X. B. Adv. Mater. 2016, 28, 4727.
|
[79] |
Gao K.; Jo S. B.; Shi X.; Nian L.; Zhang M.; Kan Y.; Lin F.; Kan B.; Xu B.; Rong Q.; Shui L.; Liu F.; Peng X.; Zhou G.; Cao Y.; Jen A. K. Y. Adv. Mater. 2019, 31, 1807842.
|
[80] |
Nian L.; Kan Y.; Gao K.; Zhang M.; Li N.; Zhou G.; Jo S. B.; Shi X.; Lin F.; Rong Q.; Liu F.; Zhou G.; Jen A. K. Y. Joule 2020, 4, 2223.
|
[81] |
Sun Y.; Nian L.; Kan Y.; Ren Y.; Chen Z.; Zhu L.; Zhang M.; Yin H.; Xu H.; Li J.; Hao X.; Liu F.; Gao K.; Li Y. Joule 2022, 6, 2835.
|
[82] |
Zhou J.; Wan X.; Liu Y.; Zuo Y.; Li Z.; He G.; Long G.; Ni W.; Li C.; Su X.; Chen Y. J. Am. Chem. Soc. 2012, 134, 16345.
|
[83] |
Zhou J.; Zuo Y.; Wan X.; Long G.; Zhang Q.; Ni W.; Liu Y.; Li Z.; He G.; Li C.; Kan B.; Li M.; Chen Y. J. Am. Chem. Soc. 2013, 135, 8484.
|
[84] |
Huo Y.; Gong X. T.; Lau T. K.; Xiao T.; Yan C. Q.; Lu X. H.; Lu G. H.; Zhan X. W.; Zhang H. L. Chem. Mater. 2018, 30, 8661.
|
[85] |
Liu C. Y.; Qiu N. L.; Sun Y. N.; Ke X.; Zhang H. T.; Li C. X.; Wan X. J.; Chen Y. S. Front. Chem. 2020, 8, 329.
|
[86] |
Liu C.; Liu L.; Qiu N.; Wan X.; Li C.; Lu Y. Org. Electron. 2022, 106, 106532.
|
[87] |
Wu H.; Yue Q. H.; Zhou Z. C.; Chen S. S.; Zhang D. Y.; Xu S. J.; Zhou H. Q.; Yang C. D.; Fan H. J.; Zhu X. Z. J. Mater. Chem. A 2019, 7, 15944.
|
[88] |
Meng L.; Li M.; Lu G.; Shen Z.; Wu S.; Liang H.; Li Z.; Lu G.; Yao Z.; Li C.; Wan X.; Chen Y. Small 2022, 18, 2201400.
|
[89] |
Sun K.; Xiao Z.; Lu S.; Zajaczkowski W.; Pisula W.; Hanssen E.; White J. M.; Williamson R. M.; Subbiah J.; Ouyang J.; Holmes A. B.; Wong W. W. H.; Jones D. J. Nat. Commun. 2015, 6, 6013.
|
[90] |
Chen H.; Hu D.; Yang Q.; Gao J.; Fu J.; Yang K.; He H.; Chen S.; Kan Z.; Duan T.; Yang C.; Ouyang J.; Xiao Z.; Sun K.; Lu S. Joule 2019, 3, 3034.
|
[91] |
Hu D.; Yang Q.; Chen H.; Wobben F.; Le Corre V. M.; Singh R.; Liu T.; Ma R.; Tang H.; Koster L. J. A.; Duan T.; Yan H.; Kan Z.; Xiao Z.; Lu S. Energy Environ. Sci. 2020, 13, 2134.
|
[92] |
Xia D.; Yang F.; Li J.; Li C.; Li W. Mater. Chem. Front. 2019, 3, 1565.
|
[93] |
Qin J.; An C.; Zhang J.; Ma K.; Yang Y.; Zhang T.; Li S.; Xian K.; Cui Y.; Tang Y.; Ma W.; Yao H.; Zhang S.; Xu B.; He C.; Hou J. Sci. China Mater. 2020, 63, 1142.
|
[94] |
Jiang M.; Zhi H.-F.; Zhang B.; Yang C.; Mahmood A.; Zhang M.; Woo H. Y.; Zhang F.; Wang J.-L.; An Q. ACS Energy Lett. 2023, 8, 1058.
|
[95] |
Xu T.; Lv J.; Chen Z.; Luo Z.; Zhang G.; Liu H.; Huang H.; Hu D.; Lu X.; Lu S.; Yang C. Adv. Funct. Mater. 2023, 33, 2210549.
|
[96] |
Wu S.; Feng W.; Meng L.; Zhang Z.; Si X.; Chen Y.; Wan X.; Li C.; Yao Z.; Chen Y. Nano Energy 2022, 103, 107801.
|
[97] |
Ma K.; Feng W.; Liang H.; Chen H.; Wang Y.; Wan X.; Yao Z.; Li C.; Kan B.; Chen Y. Adv. Funct. Mater. 2023, 33, 2214926.
|
[98] |
Feng W.; Ma K.; Song G.; Shao T.; Liang H.; Lu S.; Chen Y.; Long G.; Li C.; Wan X.; Yao Z.; Kan B.; Chen Y. Sci. China: Chem. 2023, 66, 2371.
|
[99] |
Song H. G.; Kim Y. J.; Lee J. S.; Kim Y.-H.; Park C. E.; Kwon S.-K. ACS Appl. Mater. Interfaces 2016, 8, 34353.
|
[100] |
Zhou R.; Jiang Z.; Yang C.; Yu J.; Feng J.; Adil M. A.; Deng D.; Zou W.; Zhang J.; Lu K.; Ma W.; Gao F.; Wei Z. Nat. Commun. 2019, 10, 5393.
|
[101] |
Zhou R.; Yang C.; Zou W.; Adil M. A.; Li H.; Lv M.; Huang Z.; Lv M.; Zhang J.; Lu K.; Wei Z. J. Energy Chem. 2021, 52, 228.
|
[102] |
Zhang L.; Sun R.; Zhang Z.; Zhang J.; Zhu Q.; Ma W.; Min J.; Wei Z.; Deng D. Adv. Mater. 2022, 34, 2207020.
|
[103] |
Wang X.; Huang D.; Han J.; Hu L.; Xiao C.; Li Z.; Yang R. ACS Appl. Mater. Interfaces 2021, 13, 11108.
|
[104] |
Wang X.; Wang J.; Han J.; Huang D.; Wang P.; Zhou L.; Yang C.; Bao X.; Yang R. Nano Energy 2021, 81, 105612.
|
[1] | Huanqing Li, Zhaohua Chen, Zujia Chen, Qiwen Qiu, Youcai Zhang, Sihong Chen, Zhaoyang Wang. Research Progress in Mercury Ion Fluorescence Probes Based on Organic Small Molecules [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3067-3077. |
[2] | Li Guan, Yongbao Mao, Yanyan Zhou, Xiaowen Feng, Yile Fu. Research Progress in Cyanine-Based Recognition Probes for G-Quadruplex DNA [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2406-2417. |
[3] | Sihong Chen, Jiamin Xu, Yuemei Li, Baoru Peng, Lingyu Luo, Huiye Feng, Zhaohua Chen, Zhaoyang Wang. Research Progress of Aggregation-Caused Quenching (ACQ) to Aggregation-Induced Emission (AIE) Transformation Based on Organic Small Molecules [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1651-1666. |
[4] | Jiang-Yang Shao, Yu-Wu Zhong. Low-Cost, High-Performance Organic Small Molecular Hole-Transporting Materials for Perovskite Solar Cells [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1447-1465. |
[5] | Liu Hui, Zhang Xiaofeng, Cheng Jingzhao, Ye Dongnai, Chen Long, Wen Herui, Liu Shiyong. Direct C—H Arylation-Derived π-Conjugated Functional Materials for Device Applications [J]. Chinese Journal of Organic Chemistry, 2020, 40(4): 831-855. |
[6] | Wang Lihui, Bai Suozhu, Li Dongyong, Zhou Hong. Effect of Structure Modification of Benzothiadiazole Acceptor Unit on the D-A-D-A-D Typed Oligothiophene Based Donor Materials for Organic Small Molecules Solar Cells: A Theoretical Study [J]. Chinese Journal of Organic Chemistry, 2020, 40(3): 748-755. |
[7] | Liang Long, Liu Li-Na, Chen Xue-Qiang, Xiang Xuan, Ling Jun, Lu Zheng-Quan, Li Jing-Jing, Li Wei-Shi. Benzodithiophene/Benzothiadiazole-Based ADA-Type Optoelectronic Molecules: Influence of Fluorine Substitution [J]. Chin. J. Org. Chem., 2019, 39(1): 157-169. |
[8] | Sun Yanna, Gao Huanhuan, Zhang Yamin, Wang Yunchuang, Kan Bin, Wan Xiangjian, Zhang Hongtao, Chen Yongsheng. An Efficient Ternary Organic Solar Cell with a Porphyrin Based Small Molecule Donor and Two Fullerene Acceptors [J]. Chin. J. Org. Chem., 2018, 38(1): 228-236. |
[9] | Chen Yi, Hu Aohan, Yang Lingyi, Li Zaoying, Yan Kun. Recent Progress in Fluorescent Probe for the Detection of Reactive Carbonyl Species [J]. Chin. J. Org. Chem., 2017, 37(8): 1939-1951. |
[10] | Cao Liang, Xiong Jinfeng, Wu Yancheng, Ding Sha, Li Mingbing, Xie Fen, Ma Zhihan, Wang Zhaoyang. Progress in the Molecular Design and Synthesis of Organic Fluorescent Probe for Picric Acid Detection [J]. Chin. J. Org. Chem., 2016, 36(9): 2053-2074. |
[11] | Zhai Wenchao, Zhou Erjun. Progress of Organic Photovoltaic Materials Based on Indacenodithiophene and Its Derivatives [J]. Chin. J. Org. Chem., 2016, 36(12): 2786-2812. |
[12] | Zhang Huimin, Wu Yancheng, You Jiayi, Cao Liang, Ding Sha, Jiang Kai, Wang Zhaoyang. New Progress in the Design, Synthesis and Application of Fluorescent Probes for Fluoride Ion Detection [J]. Chin. J. Org. Chem., 2016, 36(11): 2559-2582. |
[13] | Ren Jing, Sun Mingliang. Resent Progress of Benzodithiophene Based Efficiency Small Molecule Organic Solar Cells [J]. Chin. J. Org. Chem., 2016, 36(10): 2284-2300. |
[14] | Guo Ying, Zhu Huaxin, Liu Guilin, Yan Huimin, Zhu Bingjie, Li Shuai, Sun Yajun, Li Guohua. Polymer Solar Cells with High Open-Circuit Voltage Based on Novel Barbell-Shaped Bifullerene Derivative as Acceptor [J]. Chin. J. Org. Chem., 2016, 36(1): 172-178. |
[15] | Li Baolin. Furan Derivatives: An Emerging Class of Organic Semiconductors [J]. Chin. J. Org. Chem., 2015, 35(12): 2487-2506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||