Chin. J. Org. Chem. ›› 2014, Vol. 34 ›› Issue (7): 1300-1321.DOI: 10.6023/cjoc201402037 Previous Articles     Next Articles

REVIEW

金属离子响应型荧光传感分子的设计原理及研究进展

张鹏, 张有明, 林奇, 姚虹, 魏太保   

  1. 西北师范大学化学化工学院 教育部生态环境相关材料重点实验室 甘肃省高分子材料重点实验室 兰州 730070
  • 收稿日期:2014-02-28 修回日期:2014-03-18 发布日期:2014-04-02
  • 通讯作者: 魏太保 E-mail:weitaibao@126.com
  • 基金资助:

    国家自然科学基金(Nos.21064006,21161018,21262032)、甘肃省自然科学基金(No.IRT1177)及教育部长江学者和创新团队发展计划(No.1010RJZA018)资助项目.

Principle and the Research Progress of Fluorescent Chemosensors for Cations Recognition

Zhang Peng, Zhang Youming, Lin Qi, Yao Hong, Wei Taibao   

  1. Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070
  • Received:2014-02-28 Revised:2014-03-18 Published:2014-04-02
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 21064006, 21161018, 21262032), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT1177) and the Natural Science Foundation of Gansu Province (No. 1010RJZA018).

Fluorescent chemosensors received more and more attention because these kinds of chemosensors possess a lot of advantages such as high sensitivity, realize tele-monitor and real-time detection. It was also used as signal output in ion recognition. With the rapid development of host-guest chemistry, a series of fluorescent sensors with good properties have been reported. In this review the research progress of fluorescent chemosensors in terms of recognition principle for ion recognition in resent five years was briefly reviewed based on intramolecular charge transfer (ICT), photoinduced electron transfer (PET), fluorescence resonance energy transfer (FRET), excited-state intramolecular proton transfer (ESIPT), monomer-excimer (EM) and chelation-enhanced fluorescence (CHEF), etc. The developing orientation for further research is presented.

Key words: fluorescent sensor, ion recognition, intramolecular charge transfer (ICT), photoinduced electron transfer (PET), fluorescence resonance energy transfer (FRET), excited-state intramolecular proton transfer (ESIPT), monomer-excimer, chelation-enhanced fluorescence (CHEF)