Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (1): 284-296.DOI: 10.6023/cjoc202008044 Previous Articles Next Articles
Article
收稿日期:
2020-08-24
修回日期:
2020-09-07
发布日期:
2020-09-09
通讯作者:
温庭斌
作者简介:
基金资助:
Xinyu Wanga, Qihuan Lia, Tingbin Wena,*()
Received:
2020-08-24
Revised:
2020-09-07
Published:
2020-09-09
Contact:
Tingbin Wen
Supported by:
Share
Xinyu Wang, Qihuan Li, Tingbin Wen. Ruthenium-Catalyzed Oxygenative Transformation of Terminal Propargyl Alcohols to Metheyleneketenes via Allenylidene Intermedia-tes: Synthesis ofα,β-Unsaturated Carboxylic Acid Derivatives[J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 284-296.
Entry | x/mol% | Addtive | Yield b /% |
---|---|---|---|
1 | 10 | NaPF 6 (1 equiv.) | 95 |
2 | 10 | None | Trace |
3 | None | With or without NaPF 6 | 0 |
4 c | 10 | NaPF 6 (1 equiv.) | 84 |
5 | 10 | NaPF 6 (20 mol%) | 42 |
6 | 10 | NaBPh 4 (20 mol%) | 98 |
7 | 5 | NaBPh 4 (10 mol%) | 85 |
8 d | 5 | NaBPh 4 (10 mol%) | 97 |
9 d | 5 | NaBPh 4 (7.5 mol%) | 91 |
Entry | x/mol% | Addtive | Yield b /% |
---|---|---|---|
1 | 10 | NaPF 6 (1 equiv.) | 95 |
2 | 10 | None | Trace |
3 | None | With or without NaPF 6 | 0 |
4 c | 10 | NaPF 6 (1 equiv.) | 84 |
5 | 10 | NaPF 6 (20 mol%) | 42 |
6 | 10 | NaBPh 4 (20 mol%) | 98 |
7 | 5 | NaBPh 4 (10 mol%) | 85 |
8 d | 5 | NaBPh 4 (10 mol%) | 97 |
9 d | 5 | NaBPh 4 (7.5 mol%) | 91 |
Entry | Catalyst | Additive | Yield b /% |
---|---|---|---|
1 | CpRuCl(PPh 3) 2 | NaBPh 4 (10 mol%) | 97 |
3 c | [Ru( μ-Cl)(DPPQ) 2] 2- [BPh 4] 2 | None | Trace |
2 | CpRuCl(dppe) | NaBPh 4 (10 mol%) | 30 |
4 | Other Ru catalysts d | NaBPh 4 (10 mol%) | 0 |
5 e | RhCl(PPh 3) 3 | NaPF 6 (1 equiv.) or none | 0 |
6 e , f | [RhCl(COD)] 2 | P( p-FC 6H 4) 3 (30 mol%) NaPF 6 (1 equiv.) or none | 0 |
Entry | Catalyst | Additive | Yield b /% |
---|---|---|---|
1 | CpRuCl(PPh 3) 2 | NaBPh 4 (10 mol%) | 97 |
3 c | [Ru( μ-Cl)(DPPQ) 2] 2- [BPh 4] 2 | None | Trace |
2 | CpRuCl(dppe) | NaBPh 4 (10 mol%) | 30 |
4 | Other Ru catalysts d | NaBPh 4 (10 mol%) | 0 |
5 e | RhCl(PPh 3) 3 | NaPF 6 (1 equiv.) or none | 0 |
6 e , f | [RhCl(COD)] 2 | P( p-FC 6H 4) 3 (30 mol%) NaPF 6 (1 equiv.) or none | 0 |
[1] |
For selected reviews on the organometallic properties of vinylidene complexes, see: (a) Bruce M. I. Chem. Rev. 1991, 91, 197.
|
(b) Puerta M.C.; Valerga P. Coord. Chem. Rev. 1999, 193 ~195, 977.
|
|
(c) Wakatsuki Y. J. Organomet. Chem. 2004, 689, 4092.
|
|
(d) Qiu Z.; Xie Z. Sci. China, Ser. B :Chem. 2009, 52, 1544.
|
|
(e) Lynam J.M. Chem. -Eur. J. 2010, 16, 8238.
|
|
(f) Herndon J.W. Coord. Chem. Rev. 2018, 356, 1.
|
|
[2] |
For selected reviews on the organometallic properties of allenylidene complexes, see: (a) Bruce M. I. Chem. Rev. 1998, 98, 2797.
|
(b) Selegue J.P. Coord. Chem. Rev. 2004, 248, 1543.
|
|
(c) Rigaut S.; Touchard D.; Dixneuf P.H. Coord. Chem. Rev. 2004, 248, 1585.
|
|
(d) Che C.; Ho C.; Huang J. Coord. Chem. Rev. 2007, 251, 2145.
|
|
(e) Cadierno V.; Gimeno J. Chem. Rev. 2009, 109, 3512.
|
|
(f) Herndon J.W. Coord. Chem. Rev. 2019, 401, 213051.
|
|
[3] |
For selected reviews on metal vinylidenes and allenylidenes in catalysis, see: (a) Bruneau C.; Dixneuf P. H. Acc. Chem. Res. 1999, 32, 311.
|
(b) Trost B.M.; Toste F.D.; Pinkerton A.B. Chem. Rev. 2001, 101, 2067.
|
|
(c) Miki K.; Uemura S.; Ohe K. Chem. Lett. 2005, 34, 1068.
|
|
(d) Varela J.A.; Saá C. Chem. -Eur. J. 2006, 12, 6450.
|
|
(e) Trost B.M.; McClory A. Chem. -Asian J. 2008, 3, 164.
|
|
Bruneau C.; Dixneuf P.H. Metal Vinylidenes and Allenylidenes in Catalysis :From Reactivity to Applications in Synthesis, WILEY-VCH, Weinheim, Germany, 2008.
|
|
Varela J.A.; González-Rodríguez C.; Saá C. Ruthenium in Catalysis, InTopics in Organometallic Chemistry Series 48, Eds.: Bruneau, C.; Dixneuf, P.H., Springer, Switzerland, 2014, pp.237~288.
|
|
(h) Roh S.W.; Choi K.; Lee C. Chem. Rev. 2019, 119, 4293.
|
|
Gagosz F. Synthesis -Stuttgart 2019, 51, 1087.
|
|
(j) Jin J.-T.; Tao X.-C.; Qian Y.-L. Chin. J. Org. Chem. 2000, 20, 470. (in Chinese)
|
|
( 金军挺, 陶晓春, 钱延龙, 有机化学, 2000, 20, 470.).
|
|
[4] |
Coletti C.; Marrone A.; Re N. Acc. Chem. Res. 20 12, 45, 139.
|
[5] |
(a) Hyder I.; Jiménez-Tenorio M.; Puerta M.C.; Valerga P. Organometallics 2011, 30, 726.
|
(b) Talavera M.; Bolaño S.; Bravo J.; Castro J.; Garcı́a-Fontán S.; Hermida-Ramón J.M. Organometallics 2013, 32, 4402.
|
|
(c) Serrano-Ruiz M.; Lidrissi C.; Mañas S.; Peruzzini M.; Romerosa A. J. Organomet. Chem. 2014, 751, 654.
|
|
(d) Jiménez-Tenorio M.; Puerta M.C.; Valerga P. Organometallics 2016, 35, 388 and references therein.
|
|
[6] |
(a) Cadierno V.; Gamasa M.P.; Gimeno J.; Perez-Carreno E.; Ienco A. Organometallics 1998, 17, 5216.
|
(b) Esteruelas M.A.; Gomez A.V.; Lopez A.M.; Onate E.; Ruiz N. Organometallics 1999, 18, 1606.
|
|
(c) Cadierno V.; Conejero S.; Gamasa M.P.; Gimeno J.; Falvello L.R.; Llusar R.M. Organometallics 2002, 21, 3716.
|
|
(d) Saget T.; Cramer N. Angew. Chem., Int. Ed. 2010, 49, 8962.
|
|
(e) Queensen M.J.; Rath N.P.; Bauer E.B. Organometallics 2014, 33, 5052.
|
|
(f) García-de la Arada, I.; Díez, J.; Gamasa, M.P.; Lastra, E. J. Organomet. Chem. 2015, 797, 101.
|
|
[7] |
(a) Bustelo E.; Jimenez-Tenorio M.; Puerta M.C.; Valerga P. Organometallics 2006, 25, 4019.
|
(b) Pino-Chamorro J.A.; Bustelo E.; Puerta M.C.; Valerga P. Organometallics 2009, 28, 1546.
|
|
[8] |
(a) Trost B.M.; Frederiksen M.U.; Rudd M.T. Angew. Chem., Int. Ed. 2005, 44, 6630.
|
(b) Bruneau C.; Dixneuf P.H. Angew. Chem., Int. Ed. 2006, 45, 2176.
|
|
(c) Liu R.-S. Synlett 2008, 801.
|
|
[9] |
(a) Nishibayashi Y.; Uemura S. Curr. Org. Chem 2006, 10, 135.
|
Nishibayashi Y. Synthesis 2012, 489.
|
|
(c) Sakata K.; Nishibayashi Y. Catal. Sci. Technol. 2018, 8, 12.
|
|
[10] |
Zhang D.-Y.; Hu X.-P. Tetrahedron Lett. 2015, 56, 283.
|
[11] |
Trost B.M.; Flygare J.A. J. Am. Chem. Soc. 1992, 114, 5476.
|
[12] |
(a) Bustelo E.; Dixneuf P.H. Adv. Synth. Catal. 2005, 347, 393.
|
(b) Ma H.W.; Lin Y.C.; Huang S.L. Org. Lett. 2012, 14, 3846.
|
|
[13] |
(a) Yeh K.L.; Liu B.; Lo C.Y.; Huang H.L.; Liu R.S. J. Am. Chem. Soc. 2002, 124, 6510.
|
(b) Yeh K.L.; Liu B.; Lai Y.T.; Li C.W.; Liu R.S. J. Org. Chem. 2004, 69, 4692.
|
|
(c) Shen H.C.; Su H.L.; Hsueh Y.C.; Liu R.S. Organometallics 2004, 23, 4332.
|
|
Propargylic reduction of propargylic alcohols with 2-Propanol via similar hydrogen transfer was reported:.
|
|
(d) Yuki M.; Miyake Y.; Nishibayashi Y. Organometallics 2010, 29, 5994.
|
|
[14] |
Datta S.; Chang C.L.; Yeh K.L.; Liu R.S. J. Am. Chem. Soc. 2003, 125, 9294.
|
[15] |
(a) Cadierno V.; Díez J.; García-Garrido S.E.; Gimeno J. Chem. Commun. 2004, 2716.
|
(b) Cadierno V.; Díez J.; García-Garrido S.E.; Gimeno J.; Nebra N. Adv. Synth. Catal. 2006, 348, 2125.
|
|
(c) Cadierno V.; García-Garrido S.E.; Gimeno J. Adv. Synth. Catal. 2006, 348, 101.
|
|
(d) Onodera G.; Matsumoto H.; Nishibayashi Y.; Uemura Y. Organometallics 2005, 24, 5799.
|
|
[16] |
(a) Tidwell T.T. Angew. Chem., Int. Ed. 2005, 44, 5778.
|
(b) Allen A.D.; Tidwell T.T. Eur. J. Org. Chem. 2012, 2012, 1081.
|
|
(c) Allen A.D.; Tidwell T.T. Chem. Rev. 2013, 113, 7287.
|
|
[17] |
(a) Madhushaw R.J.; Lin M.Y.; Abu Sohel S.M.; Liu R.S. J. Am. Chem. Soc. 2004, 126, 6895.
|
(b) Lin M.Y.; Madhushaw R.J.; Liu R.S. J. Org. Chem. 2004, 69, 7700.
|
|
(c) Lin M.Y.; Maddirala S.J.; Liu R.S. Org. Lett. 2005, 7, 1745.
|
|
(d) Pati K.; Liu R.S. Chem. Commun. 2009, 5233.
|
|
(e) Kim I.; Lee C. Angew. Chem., Int. Ed. 2013, 52, 10023.
|
|
(f) Kim I.; Roh S.W.; Lee D.G.; Lee C. Org. Lett. 2014, 16, 2482.
|
|
(g) Wang Y.; Zheng Z.; Zhang L. Angew. Chem., Int. Ed. 2014, 53, 9572.
|
|
(h) Zheng R.; Wang Y.; Zhang L. Tetrahedron Lett. 2015, 56, 3144.
|
|
(i) Zeng H.; Li C.J. Angew. Chem., Int. Ed. 2014, 53, 13862.
|
|
(j) Yu C.; Ma X.; Chen B.; Tang B.; Paton R.S.; Zhang G. Eur. J. Org. Chem. 2017, 2017, 1561.
|
|
(k) Rong M.G.; Qin T.Z.; Liu X.R.; Wang H.F.; Zi W. Org. Lett. 2018, 20, 6289.
|
|
(l) Zhang W.W.; Gao T.T.; Xu L.J.; Li B.J. Org. Lett. 2018, 20, 6534.
|
|
(m) Álvarez-Pérez A.; Esteruelas M.A.; Izquierdo S.; Varela J.A.; Saá C. Org. Lett. 2019, 21, 5346.
|
|
For a recent review, see:.
|
|
Álvarez-Pérez A.; Varela J.A.; Saá C. Synthesis 2020, 52, 2639.
|
|
[18] |
Brown R.F.C.; Eastwood F.W. The Chemistry of Ketenes, Allenes and Related Compounds, John Wiley& Sons Ltd, New York , 1980, Chapter 19.
|
[19] |
(a) Hart H.; Dean D.L.; Buchanan D.N. J. Am. Chem. Soc. 1973, 95, 6294.
|
(b) Chapman O.L.; Chang C.-C.; Hole J.; Rosenquist N.R.; Tomioka H. J. Am. Chem. Soc. 1975, 97, 22, 6586.
|
|
(c) Meng J.B.; Shen M.Q.; Wang X.H.; Gao Z.H.; Wang H.G.; Matsuura T. Chin. Sci. Bull. 1991, 36, 2056.
|
|
(d) Pietri N.; Monnier M.; Aycard J.P. J. Org. Chem. 1998, 63, 2462.
|
|
(e) Yang C.; Wu W.; Liu K.; Wang H.; Su H. Sci. China :Chem. 2012, 55, 359.
|
|
[20] |
(a) Brown R.F.C.; Jones C.M. Aust. J. Chem. 1980, 33, 1817.
|
(b) Brown R.F.C.; Eastwood F.W.; Chaichit N.; Gatehouse B.M.; Pfeiffer J.M.; Woodroffe D. Aust. J. Chem. 1981, 34, 1467.
|
|
(c) Besida J.; Brown R.F.C. Aust. J. Chem. 1982, 35, 1385.
|
|
(d) Besida J.; Brown R.F.C.; Colmanet S.; Leach D.N. Aust. J. Chem. 1982, 35, 1373.
|
|
(e) Pommelet J.C.; Dhimane H.; Chuche J.; Celerier J.P.; Haddad M.; Lhommet G. J. Org. Chem. 1988, 53, 5680.
|
|
(f) Wentrup C.; Lorencak P. J. Am. Chem. Soc. 1988, 110, 1880.
|
|
(g) Brahms J.C.; Dailey W.P. J. Am. Chem. Soc. 1989, 111, 8940.
|
|
(h) Bencheikh A.; Pommelet J.C.; Chuche J. J. Chem. Soc., Chem. Commun. 1990, 615.
|
|
(i) Chuburu F.; Lacombe S.; Pfisterguillouzo G.; Bencheik A.; Chuche J.; Pommelet J.C. J. Am. Chem. Soc. 1991, 113, 1954.
|
|
(j) Fulloon B.E.; Wentrup C. J. Org. Chem. 1996, 61, 1363.
|
|
Gaber A.A.M.; McNab H. Synthesis -Stuttgart 2001, 2059.
|
|
(l) Halton B.; Dixon G.M.; Jones C.S.; Parkin C.T.; Veedu R.N.; Bornemann H.; Wentrup C. Org. Lett. 2005, 7, 949.
|
|
(m) Andersen H.G.; Wentrup C. Aust. J. Chem. 2012, 65 .
|
|
[21] |
(a) Birum G.H.; Matthews C.N. J. Am. Chem. Soc. 1968, 90, 14, 3842.
|
(b) Taylor G.A. Chem. Commun. (London )1968, 1314.
|
|
(c) Taylor G.A. J. Chem. Soc. 1969, 1755.
|
|
(c) Masters A.P.; Sorensen T.S.; Tran P.M. Can. J. Chem. 1987, 65, 1499.
|
|
[22] |
Cai T.; Yang Y.; Zhang L.; Wen T. Chin. J. Org. Chem. 2018, 38, 2017. (in Chinese)
|
( 蔡涛, 杨玉, 张丽, 温庭斌, 有机化学, 2018, 38, 2017.).
|
|
[23] |
For catalytic nitrogen tranfer to metal vinylidenes with hydrazines for nitrile synthesis, see: (a) Fukumoto Y.; Dohi T.; Masaoka H.; Chatani N.; Murai S. Organometallics 2002, 21, 3845.
|
(b) Fukumoto Y.; Tamura Y.; Iyori Y.; Chatani N. J. Org. Chem. 2016, 81, 3161.
|
|
For stoichiometrc nitrogen tranfer to metal vinylidenes with hydrazines to give nitrile complexes, see: (c) Alt H.G.; Engelhardt H.E.; Steinlein E.; Rogers D. J. Organomet. Chem. 1987, 344, 321.
|
|
(d) Barrett A.G.M.; Carpenter N.E.; Sabat M. J. Organomet. Chem. 1988, 352, C8.
|
|
(e) Albertin G.; Antoniutti S.; Bortoluzzi M.; Botter A.; Castro J. Dalton Trans. 201 5, 44, 3439.
|
|
[24] |
(a) Arshad L.; Jantan I.; Bukhari S.N.; Haque M.A. Front Pharmacol 2017, 8, 22.
|
(b) Hossain M.; Das U.; Dimmock J.R. Eur. J. Med. Chem. 2019, 183, 111687.
|
|
(c) Zhang S.; Neumann H.; Beller M. Chem. Soc. Rev. 2020, 49, 3187.
|
|
[25] |
(a) Reichl K.D.; Dunn N.L.; Fastuca N.J.; Radosevich A.T. J. Am. Chem. Soc. 2015, 137, 5292.
|
(b) Meng L.K.; Kamada Y.; Muto K.; Yamaguchi J.; Itami K. Angew. Chem., Int. Ed. 2013, 52, 10048.
|
|
(c) Liu L.; Lu H.; Wang H.; Yang C.; Zhang X.; Zhang-Negrerie D.; Du Y.F.; Zhao K. Org. Lett. 2013, 15, 2906.
|
|
(d) Li Y.J.; Yang Q.; Yang L.Q.; Lei N.; Zheng K. Chem. Commun. 2019, 55, 4981.
|
|
[26] |
Bruce M.I.; Low P.J.; Tiekink E.R.T. J. Organomet. Chem. 1999, 572, 3.
|
[27] |
Following Saá’s conditions for the oxidative amidation of alkynes(see Ref.[17m]),1 equiv. of NaPF6 was used. The PF6 – anion is prone to dissociate into PF5 and F– at elevated temperature and the residual water presented in the solution may cause further hydrolysis of the resulting PF5 species to form phosphate. See: (a) Odedra A.; Datta S.; Liu R. S. J. Org. Chem. 2007, 72, 3289.
|
(b) Krossing I.; Raabe I. Chem. -Eur. J. 2004, 10, 5017.
|
|
(c) Krossing I.; Raabe I. Angew. Chem., Int. Ed. 2004, 43, 2066.
|
|
[28] |
The DCE solvent may undergo dissociation to eliminate hydrogen chloride after prolonged heating. See: (a) Ho, M. L.; Flynn, A. B.; Ogilvie, W. W.J. Org. Chem. 2007, 72, 977.
|
(b) He W.; Xie L.; Xu Y.; Xiang J.; Zhang L. Org. Biomol. Chem. 2012, 10, 3168.
|
|
(c) Qian G.; Hong X.; Liu B.; Mao H.; Xu B. Org. Lett. 2014, 16, 5294.
|
|
[29] |
(a) Pavlik S.; Mereiter K.; Puchberger M.; Kirchner K. J. Organomet. Chem. 2005, 690, 5497.
|
(b) Hartmann S.; Winter R.F.; Brunner B.M.; Sarkar B.; Knodler A.; Hartenbach I. Eur. J. Inorg. Chem. 2003, 876.
|
|
(c) Chan W.C.; Lau C.P.; Chen Y.Z.; Fang Y.Q.; Ng S.M.; Jia G.C. Organometallics 1997, 16, 34.
|
|
(d) Buriez B.; Burns I.D.; Hill A.F.; White A.J.P.; Williams D.J.; Wilton-Ely J.D.E. T. Organometallics 1999, 18, 1504.
|
|
[30] |
(a) Picquet M.; Bruneau C.; Dixneuf P.H. Chem. Commun. 1998, 2249.
|
(b) Furstner A.; Liebl M.; Lehmann C.W.; Picquet M.; Kunz R.; Bruneau C.; Touchard D.; Dixneuf P.H. Chem. -Eur. J. 2000, 6, 1847.
|
|
[31] |
Selegue J.P. J. Am. Chem. Soc. 1983, 105, 5921.
|
[32] |
(a) Lukehart C.M.; Zelie J.V. J. Organomet. Chem. 1975, 97, 421.
|
(b) Wulff W.D.; Yang D.C. J. Am. Chem. Soc. 1983, 105, 6726.
|
|
(c) Dötz K.H. Angew. Chem., Int. Ed. 1984, 23, 587.
|
|
(d) Barrett A.G.M.; Mortier J.; Sabat M.; Sturgess M.A. Organometallics 1988, 7, 2553.
|
|
(e) Gibert M.; Ferrer M.; Lluch A.M.; Sánchez-Baeza F.; Messeguer A. J. Org. Chem. 1999, 64, 1591.
|
|
(f) Ruan W.; Shi C.; Sung H.H.Y.; Williams I.D.; Jia G. J. Organomet. Chem. 2019, 880, 7.
|
|
[33] |
(a) Trost B.M.; Rhee Y.H. J. Am. Chem. Soc. 1999, 121, 11680.
|
(b) Trost B.M.; Rhee Y.H. J. Am. Chem. Soc. 2002, 124, 2528.
|
|
(c) Taduri B.P.; Sohel S.M.A.; Cheng H.M.; Lin G.Y.; Liu R.S. Chem. Commun. 2007, 2, 2530.
|
|
[34] |
Bruce M.I.; Hameister C.; Swincer A.G.; Wallis R.C. Inorg. Synth. 1990, 28, 270.
|
[35] |
Gluyas J.B.G.; Brown N.J.; Farmer J.D.; Low P.J. Aust. J. Chem. 2017, 70, 113.
|
[36] |
Cai T.; Yang Y.; Li W.W.; Qin W.B.; Wen T.B. Chem. -Eur. J. 2018, 24, 1606.
|
[37] |
Alcock N.W.; Burns I.D.; Claire K.S.; Hill A.F. Inorg. Chem. 1992, 31, 2906.
|
[38] |
Boren B.C.; Narayan S.; Rasmussen L.K.; Zhang L.; Zhao H.T.; Lin Z.Y.; Jia G.C.; Fokin V.V. J. Am. Chem. Soc. 200 8, 130, 14900.
|
[39] |
(a) Harada S.; Yano H.; Obora Y. ChemCatChem 2013, 5, 121.
|
(b) Han Y.P.; Song X.R.; Qiu Y.F.; Hao X.H.; Wang J.; Wu X.X.; Liu X.Y.; Liang Y.M. J. Org. Chem. 2015, 80, 9200.
|
|
(c) Groundwater P.W.; Garnett I.; Morton A.J.; Sharif T.; Coles S.J.; Hursthouse M.B.; Nyerges M.; Anderson R.J.; Bendell D.; McKillop A.; Zhang W. J. Chem. Soc., Perkin Trans. 1 2001, 2781.
|
|
(d) Ueda S.; Okada T.; Nagasawa H. Chem. Commun. 2010, 46, 2462.
|
|
(e) Reeves D.C.; Rodriguez S.; Lee H.; Haddad N.; Krishnamurthy D.; Senanayake C.H. Org. Lett. 2011, 13, 2495.
|
|
(f) Song C.E.; Jung D.U.; Choung S.Y.; Roh E.J.; Lee S.G. Angew. Chem., Int. Ed. 2 004, 43, 6183.
|
|
(g) Inamoto K.; Okawa H.; Taneda H.; Sato M.; Hirono Y.; Yonemoto M.; Kikkawa S.; Kondo Y. Chem. Commun. 2012, 48, 9771.
|
|
(h) Ito Y. Tetrahedron 2007, 63, 3108.
|
[1] | Wei Wang, Zheyu Zhang, Xue Zhang, Haifeng Yu, Hui Luo, Dongyue Huo, Yupeng Xu, Xiaobo Zhao. Synthesis of Polysubstituted 2,3-Dihydropyridin-4(1H)-one in Water [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 742-750. |
[2] | Xiaozheng Zhao, Qinqin Ling, Guiyan Cao, Xing Huo, Xiaolong Zhao, Yingpeng Su. Research Progress in the Cyclization Reactions with Propargyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2605-2639. |
[3] | Qingyun Gu, Zhenfeng Cheng, Xiaobao Zeng. Electrochemical Oxidative Trifluoromethylation of α-Oxoketene Ketene Dithioacetals with CF3SO2Na [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1537-1544. |
[4] | Peng Wang, Da Yang, Huan Liu. Recent Advances on the Synthesis of β-Lactams by Involving Carbon Monoxide [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3448-3458. |
[5] | Hengding Wang, Ling Jiang, Hongyan Liang, Hongjun Fan. Mechanism of Silver-Catalyzed [2+2] Cycloaddition between Siloxy-Alkynes and Carbonyl Compound: A Silylium Ion Migration Approach [J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4327-4337. |
[6] | Xinling Li, Huili Liu, Shunji Zhang. Direct Nucleophilic Substitution of Propargyl Alcohols with Enoxysilanes [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 407-411. |
[7] | Zhang Shunji, Liu Huili. Sulfuric Acid Catalyzed Rapid Nucleophilic Substitution of Propargyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2020, 40(5): 1257-1265. |
[8] | Li Yi, Wan Jieping. Synthesis of 3-Alkylthiol Pyrazoles via Regioselective Annulation Reactions of Sulfonyl Hydrazines and Ketene Dithioacetals [J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3889-3894. |
[9] | Cai Tao, Yang Yu, Zhang Li, Wen Tingbin. Reactivity of Ruthenium Allenylidene Complexes with Hydrazines:Formation of Acrylonitrile Complexes [J]. Chin. J. Org. Chem., 2018, 38(8): 2017-2027. |
[10] | Zhang Haifeng, Bao Hanyang, Xu Zheng, Liu Yunkui. Metal-Free Thiomethylation of α-Oxoketene Dithioacetals [J]. Chin. J. Org. Chem., 2017, 37(8): 2153-2158. |
[11] | Cui Tao, Li Congxiang, Li Ming, Wen Lirong. Efficient Copper-Catalyzed Coupling Reaction for the Synthesis of Benzo[4,5]imidazo[1,2-b]pyrazoles [J]. Chin. J. Org. Chem., 2017, 37(6): 1487-1493. |
[12] | Zhao Lifang, Tong Xiaojuan, Zhu Haitao, Yang Desuo, Fan Mingjin. Intermolecular[2+2] Cycloaddition of in-situ Generated Allenylic Esters [J]. Chin. J. Org. Chem., 2017, 37(3): 646-651. |
[13] | Sun Jiajing, Zhou Likai, Tan Guanhai, Li Shuai, Wang Shuxia, Chen Hua, Li Xiaoliu. Synthesis and Anti-tumor Activity of Novel Quinazolin-4-one Derivatives [J]. Chin. J. Org. Chem., 2017, 37(2): 455-461. |
[14] | Luo Dayun, Cui Shisheng, Hu Xingmei, Lin Jun, Yan Shengjiao. Synthesis of Amide Class Heterocyclic Ketene Aminals [J]. Chin. J. Org. Chem., 2017, 37(1): 166-175. |
[15] | Kong Lingbin, Yang Ruixia, Du Xuanxuan, Yan Shengjiao, Lin Jun. Simple Synthesis of Bicyclic Pyrrole Ketone Compounds [J]. Chin. J. Org. Chem., 2016, 36(10): 2437-2441. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||