Chinese Journal of Organic Chemistry ›› 2022, Vol. 42 ›› Issue (2): 344-352.DOI: 10.6023/cjoc202109035 Previous Articles Next Articles
REVIEWS
收稿日期:
2021-09-22
修回日期:
2021-10-18
发布日期:
2022-02-24
通讯作者:
徐新芳
基金资助:
Kemiao Hong, Jingjing Huang, Minghan Yao, Xinfang Xu()
Received:
2021-09-22
Revised:
2021-10-18
Published:
2022-02-24
Contact:
Xinfang Xu
Supported by:
Share
Kemiao Hong, Jingjing Huang, Minghan Yao, Xinfang Xu. Recent Advances in Nitrene/Alkyne Metathesis Cascade Reaction[J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 344-352.
[1] |
Tiemann, F. Ber. Dtsch. Chem. Ges. 1891, 24, 4162.
doi: 10.1002/cber.v24:2 |
[2] |
(a) Egger, J.; Carreira, E. M. Nat. Prod. Rep. 2014, 31, 449.
doi: 10.1039/C3NP70084D |
(b) Darses, B.; Rodrigues, R.; Neuville, L.; Mazurais, M.; Dauban, P. Chem. Commun. 2017, 53, 493.
doi: 10.1039/C6CC07925C |
|
(c) Hazelard, D.; Nocquet, P.-A.; Compain, P. Org. Chem. Front. 2017, 4, 2500.
doi: 10.1039/C7QO00547D |
|
(d) Zhang, J.; Pérez-Temprano, M. H. Chimia 2020, 74, 895.
doi: 10.2533/chimia.2020.895 |
|
[3] |
(a) Smith, P. A. S.; Brown, B. B. J. Am. Chem. Soc. 1951, 73, 2435.
doi: 10.1021/ja01150a008 |
(b) Smith, P. A. S.; Clegg, J. M.; Hall, J. H. J. Org. Chem. 1958, 23, 524.
doi: 10.1021/jo01098a006 |
|
[4] |
(a) Lwowski, W.; Mattingly, T. W. Tetrahedron Lett. 1962, 3, 277.
doi: 10.1016/S0040-4039(00)70866-5 |
(b) Lwowski, W.; Mattingly, T. W. J. Am. Chem. Soc. 1965, 87, 1947.
doi: 10.1021/ja01087a019 |
|
[5] |
(a) Sloan, M. F.; Renfrow, W. B.; Breslow, D. S. Tetrahedron Lett. 1964, 5, 2905.
doi: 10.1016/S0040-4039(00)70443-6 |
(b) Breslow, D. S.; Sloan, M. F.; Newburg, N. R.; Renfrow, W. B. J. Am. Chem. Soc. 1969, 91, 2273.
doi: 10.1021/ja01037a016 |
|
[6] |
(a) Smolinsky, G. J. Am. Chem. Soc. 1960, 82, 4717.
doi: 10.1021/ja01502a065 |
(b) ApSimon, J. W.; Edwards, O. E. Can. J. Chem. 1962, 40, 896.
doi: 10.1139/v62-136 |
|
(c) Masamune, S. J. Am. Chem. Soc. 1964, 86, 290.
doi: 10.1021/ja01056a042 |
|
(d) Anastassiou, A. G.; Simmons, H. E.; Marsh, F. D. J. Am. Chem. Soc. 1965, 87, 2296.
doi: 10.1021/ja01088a043 |
|
[7] |
Kwart, H.; Khan, A. A. J. Am. Chem. Soc. 1967, 89, 1951.
doi: 10.1021/ja00984a035 |
[8] |
Ullman, E. F.; Singh, B. J. Am. Chem. Soc. 1966, 88, 1844.
doi: 10.1021/ja00960a066 |
(b) Nunes, C. M.; Reva, I.; Melo, T. M. V. D. P. E.; Fausto, R. J. Org. Chem. 2012, 77, 8723.
doi: 10.1021/jo301699z |
|
[9] |
Sauer, J.; Mayer, K. K. Tetrahedron Lett. 1968, 9, 319.
doi: 10.1016/S0040-4039(01)98753-2 |
[10] |
Sauer, J.; Mayer, K. K. Tetrahedron Lett. 1968, 3, 325.
doi: 10.1016/0040-4020(58)80037-X |
[11] |
Yamada, Y.; Yamamoto, T.; Okawara, M. Chem. Lett. 1975, 361.
|
[12] |
(a) Breslow, R.; Gellman, S. H. J. Chem. Soc. Chem. Commun. 1982, 1400.
|
(b) Breslow, R.; Gellman, S. H. J. Am. Chem. Soc. 1983, 105, 6728.
doi: 10.1021/ja00360a039 |
|
[13] |
Mansuy, D.; Mahy, J.-P.; Dureault, A.; Bedi, G.; Battioni, P. J. Chem. Soc., hem. Commun. 1984, 1161.
|
[14] |
(a) Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. A.; Barnes, D. M. J. Am. Chem. Soc. 1993, 115, 5328.
doi: 10.1021/ja00065a068 |
(b) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742.
doi: 10.1021/ja00086a007 |
|
[15] |
Li, Z.; Conser, K. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 5326.
doi: 10.1021/ja00065a067 |
[16] |
Müller, P.; Baud, C.; Jacquier, Y. Tetrahedron 1996, 52, 1543.
doi: 10.1016/0040-4020(95)00999-X |
[17] |
Yu, X.-Q.; Huang, J.-S.; Zhou, X.-G.; Che, C.-M. Org. Lett. 2000, 2, 2233.
pmid: 10930251 |
[18] |
Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935.
doi: 10.1021/ja011033x |
[19] |
Dauban, P.; Sanière, L.; Tarrade, A.; Dodd, R. J. Am. Chem. Soc. 2001, 123, 7707.
pmid: 11480997 |
[20] |
(a) Dequirez, G.; Pons, V.; Dauban, P. Angew. Chem., Int. Ed. 2012, 51, 7384.
doi: 10.1002/anie.201201945 pmid: 32064858 |
(b) Wentrup, C. Angew. Chem. Int. Ed. 2018, 57, 11508.
doi: 10.1002/anie.v57.36 pmid: 32064858 |
|
(c) Chu, J. C. K.; Rovis, T. Angew. Chem. Int. Ed. 2018, 57, 62.
doi: 10.1002/anie.201703743 pmid: 32064858 |
|
(d) Trowbridge, A.; Scarlett, S. M.; Gaunt, M. L. Chem. Rev. 2020, 120, 2613.
doi: 10.1021/acs.chemrev.9b00462 pmid: 32064858 |
|
[21] |
(a) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831.
doi: 10.1039/c005219c pmid: 20617243 |
(b) Intrieri, D.; Zardi, P.; Caselli, A.; Gallo, E. Chem. Commun. 2014, 50, 11440.
doi: 10.1039/C4CC03016H pmid: 20617243 |
|
(c) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040.
doi: 10.1021/acs.accounts.5b00020 pmid: 20617243 |
|
[22] |
(a) Shimbayashi, T.; Sasakura, K.; Eguchi, A.; Okamoto, K.; Ohe, K. Chem. Eur. J. 2019, 25, 3156.
|
(b) Van Vliet, K. M.; Bruin, B. ACS Catal. 2020, 10, 4751.
doi: 10.1021/acscatal.0c00961 |
|
[23] |
Green, M.; Mercer, R. J.; Morton, C. E.; Orpen, A. G. Angew. Chem. Int. Ed. Engl. 1985, 24, 422.
doi: 10.1002/(ISSN)1521-3773 |
[24] |
Okamoto, K.; Oda, T.; Kohigashi, S.; Ohe, K. Angew. Chem. Int. Ed. 2011, 50, 11470.
doi: 10.1002/anie.v50.48 |
[25] |
Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. J. Am. Chem. Soc. 2018, 140, 8429.
doi: 10.1021/jacs.8b05343 |
[26] |
Wang, Y.-C.; Lai, X.-J.; Huang, K.; Yadav, S.; Qiu, G.; Zhang, L.; Zhou, H. Org. Chem. Front. 2021, 8, 1677.
doi: 10.1039/D0QO01360A |
[27] |
(a) Mondal, R. R.; Khamarui, S.; Maiti, D. K. Org. Lett. 2017, 19, 5964.
doi: 10.1021/acs.orglett.7b02844 pmid: 29056045 |
(b) Deng, T. N.; Mazumdar, W.; Ford, R. L.; Jana, N.; Izar, R.; Wink, D. J.; Driver, T. G. J. Am. Chem. Soc. 2020, 142, 4456.
doi: 10.1021/jacs.9b13599 pmid: 29056045 |
|
[28] |
Tan, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 3676.
doi: 10.1021/ja100676r |
[29] |
Liu, G.; Zhang, Y.; Yuan, Y.; Xu, H. J. Am. Chem. Soc. 2013, 135, 3343.
doi: 10.1021/ja311923z |
[30] |
(a) McIntosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis, J. C.; Brown, T. R.; Arnold, F. A. Angew. Chem., Int. Ed. 2013, 52, 9309.
doi: 10.1002/anie.201304401 pmid: 31611634 |
(b) Mahy, J.-P.; Ciesielski, J.; Dauban, P. Angew. Chem., Int. Ed. 2014, 53, 6862.
doi: 10.1002/anie.201403654 pmid: 31611634 |
|
(c) Singh, R.; Bordeaux, M.; Fasan, R. ACS Catal. 2014, 4, 546.
doi: 10.1021/cs400893n pmid: 31611634 |
|
(d) Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmann-Chen, S.; Arnold, F. H. Nat. Chem. 2017, 9, 629.
doi: 10.1038/nchem.2783 pmid: 31611634 |
|
(e) Yang, Y.; Cho, I.; Qi, X.; Liu, P.; Arnold, F. A. Nat. Chem. 2019, 11, 987.
doi: 10.1038/s41557-019-0343-5 pmid: 31611634 |
|
[31] |
(a) Gephart, R. T.; III.; Warren, T. H. Organometallics 2012, 31, 7728.
doi: 10.1021/om300840z |
(b) Rodríguez, M. R.; Díaz-Requejo, M. M.; Pérez, P. J. Synlett 2021, 32, 763.
doi: 10.1055/s-0040-1706534 |
|
[32] |
Nägeli, I.; Baud, C.; Bernardinelli, G.; Jacquier, Y.; Moran, M.; Müller, P. Helv. Chim. Acta 1997, 80, 1087.
doi: 10.1002/hlca.v80:4 |
[33] |
(a) Plietker, B.; Röske, A. Catal. Sci. Technol. 2019, 9, 4188.
doi: 10.1039/c9cy00675c |
(b) Wang, P.; Deng, L. Chin. J. Chem. 2018, 36, 1222.
doi: 10.1002/cjoc.v36.12 |
|
[34] |
Groves, J. T.; Takahashi, T. J. Am. Chem. Soc. 1983, 105, 2073.
doi: 10.1021/ja00345a071 |
[35] |
Cenini, S.; Tollari, S.; Penoni, A.; Cereda, C. J. Mol. Catal. A 1999, 137, 135.
doi: 10.1016/S1381-1169(98)00116-2 |
[36] |
For review: a Intrieri, D.; Carminati, D. M.; Gallo, E. J. Porphyrins Phthalocyanines 2016, 20, 190.
doi: 10.1142/S1088424616500383 |
Selected recent advance:
doi: 10.1016/j.chempr.2020.07.005 |
|
(b) Leest, N. P.; Vliet, K. M.; Bruin, B. Chem 2020, 6, 1851.
|
|
[37] |
(a) Kuijpers, P. F.; Tiekink, M. J.; Breukelaar, W. B.; Broere, D. L. J.; Leest, N. P.; Vlugt, J. I.; Reek, J. N. H.; Bruin, B. Chem. Eur. J. 2017, 23, 7945.
doi: 10.1002/chem.201700358 |
(b) Li, C.-Q.; Lang, K.; Lu, H. J.; Hu, Y.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2018, 57, 16837.
doi: 10.1002/anie.v57.51 |
|
(c) Hu, Y.; Lang, K.; Li, C.; Gill, J. B.; Kim, I.; Lu, H.; Fields, K. B.; Marshall, M.; Cheng, Q.; Cui, X.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2019, 141, 18160.
doi: 10.1021/jacs.9b08894 |
|
[38] |
For reviews: a Alderson, J. M.; Corbin, J. R.; Schomaker, J. M. Acc. Chem. Res. 2017, 50, 2147.
doi: 10.1021/acs.accounts.7b00178 pmid: 32255621 |
(b) Zhang, J.; Shan, C.; Zhang, T.; Song, J.; Liu, T.; Lan, Y. Coord. Chem. Rev. 2019, 382, 69.
doi: 10.1016/j.ccr.2018.12.009 pmid: 32255621 |
|
Pioneering work and selected examples:
doi: 10.1021/ja038668b pmid: 32255621 |
|
(c) Cui, Y.; He, C. J. Am. Chem. Soc. 2003, 125, 16202.
doi: 10.1021/ja412547r pmid: 32255621 |
|
(d) Llaveria, J.; Beltrán, Á.; Sameera, W. M. C.; Locati, A.; DíazRequejo, M. M.; Matheu, M. I.; Castillón, S.; Maseras, F.; Pérez, P. J. J. Am. Chem. Soc. 2014, 136, 5342.
doi: 10.1021/ja406654y pmid: 32255621 |
|
(e) Rigoli, J. W.; Weatherly, C. D.; Alderson, J. M.; Vo, B. T.; Schomaker, J. M. J. Am. Chem. Soc. 2013, 135, 17238.
doi: 10.1021/jacs.0c02803 pmid: 32255621 |
|
(f) Annapureddy, R. R.; Jandl, C.; Bach, T. J. Am. Chem. Soc. 2020, 142, 7374.
pmid: 32255621 |
|
[39] |
Other metal catalysts: For Zn: a Breslow, D. S.; Sloan, M. F. Tetrahedron Lett. 1968, 5349.
pmid: 21774482 |
For, Pd:
doi: 10.1246/bcsj.55.3943 pmid: 21774482 |
|
(b) Migita, T.; Chiba, T.; Takahashi, K.; Siatoh, N.; Nkaido, S.; Kosugi, M. Bull. Chem. Soc. Jpn 1982, 55, 3943.
doi: 10.1021/ja502164f pmid: 21774482 |
|
(c) Broere, D. L. J.; Bruin, B.; Reek, J. N. H.; Lutz, M.; Dechert, S.; Vlugt, J. I. J. Am. Chem. Soc. 2014, 136, 11574.
doi: 10.1021/ic200911b pmid: 21774482 |
|
For Ta and Zr:
pmid: 21774482 |
|
(d) Heyduk, A. F.; Zarkesh, R. A.; Nguyen, A. I. Inorg. Chem. 2011, 50, 9849.
pmid: 21774482 |
|
[40] |
(a) Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935.
doi: 10.1021/ja011033x |
(b) Espino, C. G.; Du Bois, J. Angew. Chem., Int. Ed. 2001, 40, 598.
doi: 10.1002/1521-3773(20010202)40:3【-逻*辑*与-】#x00026;lt;【-逻*辑*与-】#x00026;gt;1.0.CO;2-A |
|
(c) Roizen, J. L.; Harvey, M. E.; Du Bois, J. Acc. Chem. Res. 2012, 45, 911.
doi: 10.1021/ar200318q |
|
[41] |
Thacker, N. C.; Lin, Z.; Zhang, T.; Gilhula, J. C.; Abney, C. W.; Lin, W. J. Am. Chem. Soc. 2016, 138, 3501.
doi: 10.1021/jacs.5b13394 pmid: 26885768 |
[42] |
Paradine, S. M.; Griffin, J. R.; Zhao, J.; Petronico, A. L.; Miller, S. M.; White, M. C. Nat. Chem. 2015, 7, 987.
doi: 10.1038/nchem.2366 pmid: 26587714 |
[43] |
Hong, S. Y.; Park, Y.; Hwang, Y.; Kim, Y. B.; Baik, M. H.; Chang, S. Science 2018, 359, 1016.
doi: 10.1126/science.aap7503 |
[44] |
(a) Hayashi, H.; Uchida, T. Eur. J. Org. Chem. 2020, 909.
|
(b) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247.
doi: 10.1021/acs.chemrev.6b00644 |
|
(c) Wang, P.; Deng, L. Chin. J. Chem. 2018, 36, 1222.
doi: 10.1002/cjoc.v36.12 |
|
[45] |
(a) Shen, M.; Leslie, B. E.; Driver, T. G. Angew. Chem. Int. Ed. 2008, 47, 5056.
doi: 10.1002/anie.v47:27 |
(b) Stokes, B. J.; Jovanovic, B.; Dong, H.; Richert, K. J.; Riell, R. D.; Driver, T. G. J. Org. Chem. 2009, 74, 3225.
doi: 10.1021/jo9002536 |
|
[46] |
Ton, T. M.; Tejo, C.; Tania, S.; Chang, J. W.; Chan, P. W. J. Org. Chem. 2011, 76, 4894.
doi: 10.1021/jo200284a |
[47] |
(a) Uchida, T.; Katsuki, T. Chem. Rec. 2014, 14, 117.
doi: 10.1002/tcr.v14.1 pmid: 12914485 |
(b) Damiano, C.; Intrieri, D.; Gallo, E. Inorg. Chim. Acta 2018, 470, 51.
doi: 10.1016/j.ica.2017.06.032 pmid: 12914485 |
|
(c) Müller, P.; Fruit, C. Chem. Rev. 2003, 103, 2905.
pmid: 12914485 |
|
(d) Halfen, J. A. Curr. Org. Chem. 2005, 9, 657.
doi: 10.2174/1385272053765024 pmid: 12914485 |
|
(e) Changm, J. W. W.; Ton, T. M. U.; Chan, P. W. H. Chem. Rec. 2011, 11, 331.
doi: 10.1002/tcr.201100018 pmid: 12914485 |
|
[48] |
(a) Mancheño, O. G.; Bolm, C. Chem. Eur. J. 2007, 13, 6674.
doi: 10.1002/(ISSN)1521-3765 pmid: 32357006 |
(b) Yoshitake, M.; Hayashi, H.; Uchida, T. Org. Lett. 2020, 22, 4021.
doi: 10.1021/acs.orglett.0c01373 pmid: 32357006 |
|
(c) Lam, T. L.; Tso, K. C.-H.; Cao, B.; Yang, C.; Chen, D.; Chang, X. Y.; Huang, J. S.; Che, C. M. Inorg. Chem. 2017, 56, 4253.
doi: 10.1021/acs.inorgchem.7b00226 pmid: 32357006 |
|
(d) Wang, J.; Frings, M.; Bolm, C. Angew. Chem. Int. Ed. 2013, 125, 8823.
doi: 10.1002/ange.201304451 pmid: 32357006 |
|
(e) Xiao, X. S.; Huang, S. P.; Tang, S. S.; Jia, G. K.; Ou, G. C.; Li, Y. Y. J. Org. Chem. 2019, 84, 7618.
doi: 10.1021/acs.joc.9b00281 pmid: 32357006 |
|
[49] |
(a) Ragaini, F.; Penoni, A.; Gallo, E.; Tollari, S.; Gotti, C. L.; Lapadula, M.; Mangioni, E.; Cenini, S. Chem. Eur. J. 2003, 9, 249.
doi: 10.1002/chem.200390018 pmid: 22381423 |
(b) Harrold, N. D.; Waterman, R.; Hillhouse, G. L.; Cundari, T. R. J. Am. Chem. Soc. 2009, 131, 12872.
doi: 10.1021/ja904370h pmid: 22381423 |
|
(c) Takaoka, A.; Moret, M.-E.; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 6695.
doi: 10.1021/ja211603f pmid: 22381423 |
|
[50] |
Doyle, M. P. In Reactive Intermediate Chemistry, Chapter 12, Eds.: Moss, R. A.; Platz, M. S.; Jones, Jr., M., Wiley, New York, 2004, pp. 561-592.
|
[51] |
For review: a Pei, C.; Zhang, C.; Qian, Y.; Xu, X. Org. Biomol. Chem. 2018, 16, 8677.
doi: 10.1039/C8OB02420K |
Selected recent advances:
doi: 10.1039/C7CC08221E |
|
(b) Zheng, Y.; Bao, M.; Yao, R.; Qiu, L.; Xu, X. Chem. Commun. 2018, 54, 350.
doi: 10.1021/acscatal.8b04144 |
|
(c) Zhang, C.; Li, H.; Pei, C.; Qiu, L.; Hu, W.; Bao, X.; Xu, X. ACS Catal. 2019, 9, 2440.
|
|
(d) Dong, K.; Fan, X.; Pei, C.; Zheng, Y.; Chang, S.; Cai, J.; Qiu, L.; Yu, Z.; Xu, X. Nat. Common. 2020, 11, 2363.
doi: 10.1038/s41467-021-21335-9 |
|
(e) Zhang, C.; Hong, K.; Pei, C.; Zhou, S.; Hu, W.; Hashmi, A. S. K.; Xu, X. Nat. Commun. 2021, 12, 1182.
doi: 10.1002/adsc.v363.16 |
|
(f) Bao, M.; Xie, X.; Hu, W.; Xu, X. Adv. Syn. Cat. 2021, 363, 4018.
|
|
[52] |
For reviews: a Davies, P. W.; Garzon, M. Asian J. Org. Chem. 2015, 4, 694.
doi: 10.1002/ajoc.v4.8 |
(b) Liao, Y.; Zhu, L.; Yu, Y.; Chen, G.; Huang, X. Chin. J. Org. Chem. 2017, 37, 2785.
doi: 10.6023/cjoc201708021 |
|
(c) Tian, X.; Song, L.; Hashmi, A. S. K. Chem. Eur. J. 2020, 26, 3197.
doi: 10.1002/chem.v26.15 |
|
[53] |
Early examples and selected advances: a Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.
doi: 10.1021/ja053804t pmid: 29652163 |
(b) Li, C.; Zhang, L. Org. Lett. 2011, 13, 1738.
doi: 10.1021/ol2002607 pmid: 29652163 |
|
(c) Gronnier, C.; Boissonnat, G.; Gagosz, F. Org. Lett. 2013, 15, 4234.
doi: 10.1021/ol4019634 pmid: 29652163 |
|
(d) Matsuoka, J.; Matsuda, Y.; Kawada, Y.; Oishi, S.; Ohno, H. Angew. Chem., Int. Ed. 2017, 56, 7444.
doi: 10.1002/anie.201703279 pmid: 29652163 |
|
(e) Cai, J.; Wu, B.; Rong, G.; Zhang, C.; Qiu, L.; Xu, X. Org. Lett. 2018, 20, 2733.
doi: 10.1021/acs.orglett.8b00939 pmid: 29652163 |
|
(f) Saito, A.; Kambara, Y.; Yagyu, T.; Noguchi, K.; Yoshimura, A.; Zhdankin, V. V. Adv. Synth. Catal. 2015, 357, 667.
doi: 10.1002/adsc.v357.4 pmid: 29652163 |
|
[54] |
Thornton, A. R.; Blakey, S. B. J. Am. Chem. Soc. 2008, 130, 5020.
doi: 10.1021/ja7111788 pmid: 18355007 |
[55] |
Mace, N.; Thornton, A. R.; Blakey, S. B. Angew. Chem., Int. Ed. 2013, 52, 5836.
doi: 10.1002/anie.201301087 |
[56] |
Hong, K.; Su, H.; Pei, C.; Lv, X.; Hu, W.; Qiu, L.; Xu, X. Org. Lett. 2019, 21, 3328.
doi: 10.1021/acs.orglett.9b01074 |
[57] |
Hong, K.; Zhou, S. Hu, W.; Xu, X. Org. Chem. Front. 2020, 7, 1327.
doi: 10.1039/D0QO00294A |
[58] |
Thornton, A. R.; Martin, V. I.; Blakey, S. B. J. Am. Chem. Soc. 2009, 131, 2434.
doi: 10.1021/ja809078d pmid: 19193003 |
[59] |
Brawn, R. A.; Zhu, K.; Panek, J. S. Org. Lett. 2014, 16, 74.
doi: 10.1021/ol403035g pmid: 24328560 |
[60] |
Rodríguez, M. R.; Beltrán, A.; Mudarra, A. L.; Alvarez, E.; Maseras, F.; Díaz-Requejo, M. M.; Pérez, P. J. Angew. Chem., Int. Ed. 2017, 56, 12842.
doi: 10.1002/anie.201705664 |
[61] |
Pan, D.; Wei, Y.; Shi, M. Org. Lett. 2018, 20, 84.
doi: 10.1021/acs.orglett.7b03425 |
[62] |
Pan, D.; Wei, Y.; Shi, M. Org. Lett. 2017, 19, 3584.
doi: 10.1021/acs.orglett.7b01558 |
[63] |
Pan, D.; Wei, Y.; Shi, M. Org. Chem. Front. 2019, 6, 1123.
doi: 10.1039/C9QO00050J |
[64] |
Roy, S.; Khatua, H.; Das, S. K.; Chattopadhyay, B. Angew. Chem., Int. Ed. 2019, 58, 11439.
doi: 10.1002/anie.v58.33 |
[1] | Chengfu Zeng, Yuan He, Qing Li, Lin Dong. Ir(III)-Catalyzed Novel Three-Component Cascade Trifluoroethoxylation and One-Pot Method to Construct Complex Amide Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1115-1123. |
[2] | Xing Yang, Xu Liu, Lijia Wang. Recent Progress in Transition Metal Catalyzed C(sp3)—H Nitrene Insertion Reactions Assisted by Directing Groups [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 914-923. |
[3] | Xiaoting Qin, Ning Zou, Caimei Nong, Dongliang Mo. Recent Advances on the Synthesis of Nine-Membered N-Heterocycles [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 130-155. |
[4] | Yun Shi, Ting Xiao, Dong Xia, Wenchao Yang. SCF3 Radical Initiated Cascade Reaction of Unsaturated Hydrocarbon [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2715-2727. |
[5] | Xiaozheng Zhao, Qinqin Ling, Guiyan Cao, Xing Huo, Xiaolong Zhao, Yingpeng Su. Research Progress in the Cyclization Reactions with Propargyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2605-2639. |
[6] | Xuyu Zhou, Aijun Zhang, Qingqing Zhang, Qing'an Liu, Jun Xuan. Visible Light-Induced 4-Chromanones Synthesis: Radical Cascade Cyclization of α-Oxocarboxylic Acids with o-(Allyloxy)arylaldehydes Promoted by Phenyliodine(III) Diacetate [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2488-2495. |
[7] | Meng Li, Kai Sun. Silver-Mediated Trifluoromethylthiolation-Cyclization-Hydrolysis: Access to F3CS-Containing Quinolinones [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 2089-2097. |
[8] | Bing Liu, Zhichuang Wang, Kai Sun, Shi Tang, Xin Wang. Silver-Mediated Radical Trifluoromethylthiolation Cyclization: Synthesis of CF3S-Containing Benzimidazole[2,1-a]isoquinolines [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1387-1395. |
[9] | Xin Sun, Chaofan Qu, Chaorui Ma, Xiaowei Zhao, Guobi Chai, Zhiyong Jiang. Photoredox Catalytic Cascade Radical Addition to Construct 1,4- Diketone-Functionalized Quinoxalin-2(1H)-one Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1396-1406. |
[10] | Liwei Xiao, Guangxian Liu, Ping Ren, Tongtong Wu, Yuwei Lu, Jie Kong. Elemental Sulfur: An Excellent Sulfur-Source for Synthesis of Sulfur-Containing Heterocyclics [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1002-1012. |
[11] | Huachao Liu, Chong Shen, Xin Chang, Chunjiang Wang. Recent Advances in Catalytic Asymmetric 1,3-Dipolar Cycloaddition Reactions with Kinetic Resolution [J]. Chinese Journal of Organic Chemistry, 2022, 42(10): 3322-3334. |
[12] | Wenbo Wang, Huabin Han, Lele Wang, Qilin Wang, Zhanwei Bu. Access to Tetrasubstituted Tri(indolyl)methanes through Copper-Catalyzed Addition/Substitution Sequence [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 757-765. |
[13] | Shuyan Yu, Lihong Gao, Yizhe Yan, Zhigang Yin, Yongjia Shang. Application of Cascade Reactions in the Synthesis of Sprio-hetero- cycles Initiated by Intramolecular Cyclization of Alkynols [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 582-593. |
[14] | Ning Zou, Xiaoting Qin, Zhixin Wang, Weimin Shi, Dongliang Mo. Advances on the Synthesis and Application of α,β-Unsaturated Nitrones [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4535-4553. |
[15] | Xuehua Liu, Chuanchuan Wang, Xinlu Wang, Zhiwei Ma, Lei Meng, Degang Ding, Juntao Liu, Yajing Chen. Synthesis of Spirobarbiturate Piperidin-2-one Derivatives via Cascade Aza-Michael/Michael Cyclization Reaction [J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4450-4458. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||