Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (11): 3888-3899.DOI: 10.6023/cjoc202303029 Previous Articles Next Articles
梁俊秀a,b, 刘亚洲b, 王阿木b, 吴彦超a, 马小锋b,*(), 李惠静a,*()
收稿日期:
2023-03-20
修回日期:
2023-06-16
发布日期:
2023-07-12
基金资助:
Junxiu Lianga,b, Yazhou Liub, Amu Wangb, Yanchao Wua, Xiaofeng Mab(), Huijing Lia()
Received:
2023-03-20
Revised:
2023-06-16
Published:
2023-07-12
Contact:
E-mail: Supported by:
Share
Junxiu Liang, Yazhou Liu, Amu Wang, Yanchao Wu, Xiaofeng Ma, Huijing Li. Dearomatization of Halonaphthols via an Intermolecular [4+1] Spiroannulation with in situ Formed Aza-ortho-quinone Methides[J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3888-3899.
Entry | Base | Solvent | T/℃ | Yieldb/% |
---|---|---|---|---|
1 | Cs2CO3 | DCE | 25 | 83 |
2 | MeONa | DCE | 25 | 60 |
3 | K2CO3 | DCE | 25 | 93 (92) |
4 | DBU | DCE | 25 | 0 |
5 | DIPEA | DCE | 25 | 0 |
6 | K2CO3 | DCM | 25 | 85 |
7 | K2CO3 | THF | 25 | 82 |
8 | K2CO3 | DMF | 25 | 0 |
9 | K2CO3 | Toluene | 25 | 90 |
10 | K2CO3 | DCE | 40 | 92 |
11 | K2CO3 | DCE | 50 | 92 |
12 | K2CO3 | DCE | 10 | 90 |
Entry | Base | Solvent | T/℃ | Yieldb/% |
---|---|---|---|---|
1 | Cs2CO3 | DCE | 25 | 83 |
2 | MeONa | DCE | 25 | 60 |
3 | K2CO3 | DCE | 25 | 93 (92) |
4 | DBU | DCE | 25 | 0 |
5 | DIPEA | DCE | 25 | 0 |
6 | K2CO3 | DCM | 25 | 85 |
7 | K2CO3 | THF | 25 | 82 |
8 | K2CO3 | DMF | 25 | 0 |
9 | K2CO3 | Toluene | 25 | 90 |
10 | K2CO3 | DCE | 40 | 92 |
11 | K2CO3 | DCE | 50 | 92 |
12 | K2CO3 | DCE | 10 | 90 |
[1] |
(a) Zhao, Y.; Xia, W. Chem. Soc. Rev. 2018, 47, 2591.
doi: 10.1039/C7CS00572E |
(b) Ju, M.; Schomaker, J. M. Nat. Rev. Chem. 2021, 5, 580.
doi: 10.1038/s41570-021-00291-4 |
|
[2] |
(a) Powell, R. G.; Weisleder, D.; Smith, C. R. J. Pharm. Sci. 1972, 61, 1227.
doi: 10.1002/jps.2600610812 |
(b) Iizuka, H.; Irie, H.; Masaki, N.; Osaki, K.; Uyeo, S. J. Chem. Soc., Chem. Commun. 1973, 125.
|
|
(c) Inubushi, Y.; Ishii, H.; Yasui, B.; Hashimoto, M.; Harayama, T. Chem. Pharm. Bull. 1968, 16, 82.
doi: 10.1248/cpb.16.82 |
|
(d) Zhang, Y.; Tice, C. M.; Singe, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673.
doi: 10.1016/j.bmcl.2014.06.081 |
|
[3] |
(a) Dou, Q.; Tu, Y.; Zhang, Y.; Tian, J.; Zhang, F.; Wang, S. Adv. Synth. Catal. 2016, 358, 874.
doi: 10.1002/adsc.v358.6 |
(b) Chen, S.; Ma, W.; Yan, Z.; Zhang, F.; Wang, S.; Tu, Y.; Zhang, X.; Tian, J. J. Am. Chem. Soc. 2018, 140, 10099.
doi: 10.1021/jacs.8b05386 |
|
(c) Yuan, Y.; Han, X.; Zhu, F.; Tian, J.; Zhang, F.; Zhang, X.; Tu, Y.; Wang, S.; Guo, X. Nat. Commun. 2019, 10, 3394.
doi: 10.1038/s41467-019-11382-8 |
|
(d) Jing, Z.; Liang, D.; Tian, J.; Zhang, F.; Tu, Y. Org. Lett. 2021, 23, 1258.
doi: 10.1021/acs.orglett.0c04241 |
|
[4] |
(a) Zheng, Y.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673.
doi: 10.1016/j.bmcl.2014.06.081 pmid: 33381970 |
(b) Hiesinger, K.; Dar'in, D.; Proschak, E.; Krasavin, M. J. Med. Chem. 2021, 64, 150.
doi: 10.1021/acs.jmedchem.0c01473 pmid: 33381970 |
|
(c) Yanagimoto, A.; Uwabe, Y.; Wu, Q.; Muto, K.; Yamaguchi, J. ACS Catal. 2021, 11, 10429.
doi: 10.1021/acscatal.1c02627 pmid: 33381970 |
|
[5] |
(a) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040.
doi: 10.1021/acs.accounts.5b00020 pmid: 31072095 |
(b) Zheng, C.; You, S. Chem 2016, 1, 830.
doi: 10.1016/j.chempr.2016.11.005 pmid: 31072095 |
|
(c) Adams, K.; Ball, A. K.; Sweeney, J. B. Nat. Chem. 2017, 9, 396.
doi: 10.1038/nchem.2670 pmid: 31072095 |
|
(d) Wertjes, W. C.; Southgate, E. H.; Sarlah, D. Chem. Soc. Rev. 2018, 47, 7996.
doi: 10.1039/C8CS00389K pmid: 31072095 |
|
(e) Wang, Y.; Bode, J. W. J. Am. Chem. Soc. 2019, 141, 9739.
doi: 10.1021/jacs.9b05074 pmid: 31072095 |
|
(f) Saito, F.; Trapp, N.; Bode, J. W. J. Am. Chem. Soc. 2019, 141, 5544.
doi: 10.1021/jacs.9b01537 pmid: 31072095 |
|
(g) Flodén, N. J.; Trowbridge, A.; Willcox, D.; Walton, S. M.; Kim, Y.; Gaunt, M. J. J. Am. Chem. Soc. 2019, 141, 8426.
doi: 10.1021/jacs.9b03372 pmid: 31072095 |
|
(h) Shennan, B. D. A.; Smith, P. W.; Ogura, Y.; Dixon, D. J. Chem. Sci. 2020, 11, 10354.
doi: 10.1039/D0SC03676E pmid: 31072095 |
|
(i) Xia, Z.-L.; Xu-Xu, Q.-F.; Zheng, C.; You, S.-L. Chem. Soc. Rev. 2020, 49, 286.
doi: 10.1039/C8CS00436F pmid: 31072095 |
|
(j) Yang, W.; Zhang, M.; Feng, J. Adv. Synth. Catal. 2020, 362, 4446.
doi: 10.1002/adsc.v362.21 pmid: 31072095 |
|
(k) Zhang, C.; Bu, F.; Zeng, C.; Wang, D.; Lu, L.; Zhang, H.; Lei, A. CCS Chem. 2022, 4, 1199.
doi: 10.31635/ccschem.021.202100860 pmid: 31072095 |
|
[6] |
(a) Zhuo, C.; Zhang, W.; You, S. L. Angew. Chem., Int. Ed. 2012, 51, 12662.
doi: 10.1002/anie.v51.51 |
(b) Zhuo, C.; Liu, W.; Wu, Q.; You, S. L. Chem. Sci. 2012, 3, 205.
doi: 10.1039/C1SC00517K |
|
(c) Zhuo, C.; Cheng, Q.; Liu, W.; Zhao, Q.; You, S. L. Angew. Chem., Int. Ed. 2015, 54, 8475.
doi: 10.1002/anie.v54.29 |
|
(d) Chen, J. B.; Jia, Y. X. Org. Biomol. Chem. 2017, 15, 3550.
doi: 10.1039/C7OB00413C |
|
(e) Li, X.; Zhou, B.; Yang, R.; Yang, M.; Liang, X.; Liu, R.; Jia, Y, X. J. Am. Chem. Soc. 2018, 140, 13945.
doi: 10.1021/jacs.8b09186 |
|
(f) Liang, R. X.; Xu, D. Y.; Yang, F. M.; Jia, Y. X. Chem. Commun. 2019, 55, 7711.
doi: 10.1039/C9CC03566D |
|
[7] |
(a) Ciufolini, M. A.; Braun, N. A.; Canesi, S.; Ousmer, M.; Chang, J.; Chai, D. Synthesis 2007, 3759.
|
(b) Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. Chem. Commun. 2007, 1224.
|
|
(c) Dohi, T.; Takenaga, N.; Fukushima, K.; Uchiyama, T.; Kato, D.; Motoo, S.; Fujioka, H.; Kita, Y. Chem. Commun. 2010, 46, 7697.
doi: 10.1039/c0cc03213a |
|
(d) Palmer, L. I.; Read de Alaniz, J. Angew. Chem., Int. Ed. 2011, 50, 7167.
doi: 10.1002/anie.v50.31 |
|
(e) Xu, Z.; Xing, P.; Jiang, B. Org. Lett. 2017, 19, 1028.
doi: 10.1021/acs.orglett.6b03853 |
|
(f) Tang, W.; Cao, K.; Meng, S.; Zheng, W. Synthesis 2017, 49, 3670.
doi: 10.1055/s-0036-1589040 |
|
(g) Singh, F. V.; Kole, P. B.; Mangaonkar, S. R.; Shetgaonkar, S. E. Beilstein J. Org. Chem. 2018, 14, 1778.
doi: 10.3762/bjoc.14.152 |
|
[8] |
(a) Zhang, Z.; Song, X.; Zhang, G.; Liu, L. Chin. Chem. Lett. 2021, 32, 1423.
doi: 10.1016/j.cclet.2020.11.001 |
(b) Zhang, Z.; Cao, X.; Zhang, G.; Liu, L. Chin. Chem. Lett. 2023, 34, 107779.
doi: 10.1016/j.cclet.2022.107779 |
|
[9] |
(a) Kusama, H.; Uchiyama, K.; Yamashita, Y.; Narasaka, K. Chem. Lett. 1995, 24, 715.
doi: 10.1246/cl.1995.715 pmid: 28953364 |
(b) Tanaka, K.; Mori, Y.; Narasaka, K. Chem. Lett. 2004, 33, 26.
doi: 10.1246/cl.2004.26 pmid: 28953364 |
|
(c) Ma, X., Farndon, J. J.; Young, T. A.; Fey, N.; Bower, J. F. Angew. Chem., Int. Ed. 2017, 56, 14531.
doi: 10.1002/anie.v56.46 pmid: 28953364 |
|
(d) Farndon, J. J.; Ma, X.; Bower, J. F. J. Am. Chem. Soc. 2017, 139, 14005.
doi: 10.1021/jacs.7b07830 pmid: 28953364 |
|
(e) Zhang, C.; Bu, F.; Zeng, C.; Wang, D.; Lu, L.; Zhang, H.; Lei, A. CCS Chem. 2022, 4, 1199.
doi: 10.31635/ccschem.021.202100860 pmid: 28953364 |
|
[10] |
Ge, Y.; Qin, C.; Bai, L.; Hao, J.; Liu, J.; Luan, X. Angew. Chem., Int. Ed. 2020, 59, 18985.
doi: 10.1002/anie.v59.43 |
[11] |
(a) Yang, B. C.; Gao, S. H. Chem. Soc. Rev. 2018, 47, 7926.
doi: 10.1039/C8CS00274F pmid: 28809505 |
(b) Happy, S.; Junaid, M.; Yadagiri, D. Chem. Commun. 2023, 59, 29.
doi: 10.1039/D2CC05623B pmid: 28809505 |
|
(c) Hsiao, C. C.; Liao, H. H.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 13258.
doi: 10.1002/anie.v53.48 pmid: 28809505 |
|
(d) Gebauer, K.; F. Reuß, F.; Spanka, M.; Schneider, C. Org. Lett. 2017, 19, 4588.
doi: 10.1021/acs.orglett.7b02185 pmid: 28809505 |
|
(e) Zhang, X.; Pan, Y.; Liang, P.; Ma, X.; Jiao, W.; Shao, H. W. Adv. Synth. Catal. 2019, 361, 5552.
doi: 10.1002/adsc.v361.24 pmid: 28809505 |
|
(f) Zhou, F.; Cheng, Y.; Liu, X. P.; Chen, J. R.; Xiao, W. J. Chem. Commun. 2019, 55, 3117.
doi: 10.1039/C9CC00727J pmid: 28809505 |
|
[12] |
(a) Jian, Y.; Liang, P.; Li, X.; Shao, H.; Ma, X. Org. Biomol. Chem. 2023, 21, 179.
doi: 10.1039/D2OB01951E pmid: 35166547 |
(b) Liang, P.; Zhao, H.; Zhou, T.; Zeng, K.; Jiao, W.; Pan, Y.; Liu, Y.; Fang, D.; Ma, X.; Shao, H. Adv. Synth. Catal. 2021, 363, 3532.
doi: 10.1002/adsc.v363.14 pmid: 35166547 |
|
(c) Wang, A.; Liu, Y.-Z.; Shen, Z.; Qiao, Z.; Ma, X. Org. Lett. 2022, 24, 1454.
doi: 10.1021/acs.orglett.2c00035 pmid: 35166547 |
|
(d) Ma, X.; Liu, Y.; Du, L.; Zhou, J.; Markó, I. E. Nat. Commun. 2020, 11, 914.
doi: 10.1038/s41467-020-14522-7 pmid: 35166547 |
|
[13] |
During our preparation of this manuscript, a similar process was disclosed in a patent, in which 2.5 equiv. of 1 and 4.0 equiv. of Na2CO3 were employed in toxic CH3NO2 to maintain high yield with limited functional group tolerance, see: Zhang, J; He, Z; Cheng, X. CN 114835630, 2022.
|
[14] |
(a) Lei, L.; Liang, Y.-F.; Liang, C.; Qin, J.-K.; Pan, C.-X.; Su, G.-F.; Mo, D.-L. Org. Biomol. Chem. 2021, 19, 3379.
doi: 10.1039/d1ob00319d pmid: 33899889 |
(b) Lu, D.-L.; Yao, Y.-Y.; Liang, Y.-F.; Liang, C.; Lei, L.; Ma, L.; Mo, D.-L. J. Org. Chem. 2023, 88, 690.
doi: 10.1021/acs.joc.2c02140 pmid: 33899889 |
|
[15] |
Bram, G.; Loupy, A.; Sansoulet, J.; Vaziri, Z. F. Tetrahedron Lett. 1984, 25, 5035.
doi: 10.1016/S0040-4039(01)91111-6 |
[16] |
(a) Izzo, I.; Scioscia, M.; Gaudio, P. D.; Riccardis, F. D. Tetrahedron Lett. 2001, 42, 5421.
doi: 10.1016/S0040-4039(01)01048-6 |
(b) Song, X.; Song, A.; Zhang, F.; Li, H.; Wang, W. Nat. Commun. 2011, 2, 524.
doi: 10.1038/ncomms1541 |
|
(c) Wang, L.; Yang, D.; Li, D.; Wang, P.; Wang, K.; Wang, J.; Jiang, X.; Wang, R. Chem.-Eur. J. 2016, 22, 8483.
doi: 10.1002/chem.v22.25 |
|
(d) Zhou, B.; Yuan, Z.; Yu, J.; Luan, X. Org. Lett. 2022, 24, 837.
doi: 10.1021/acs.orglett.1c04065 |
|
[17] |
Rossi, R. A.; Pierini, A. B.; Penenory, A. B. Chem. Rev. 2003, 103, 71.
doi: 10.1021/cr960134o |
[18] |
Boal, B. W.; Schammel, A. W.; Garg, N. K. Org. Lett. 2009, 11, 3458.
doi: 10.1021/ol901383j pmid: 19601608 |
[19] |
Chen, L.; Yang, G. M.; Wang, J.; Jia, Q. F.; Wei, J.; Du, Z. Y. RSC Adv. 2015, 5, 76696.
doi: 10.1039/C5RA15903B |
[20] |
Jiang, F.; Wu, Z.; Zhang, W. Tetrahedron Lett. 2010, 51, 5124.
doi: 10.1016/j.tetlet.2010.07.084 |
[21] |
Kumar, P.; Shirke, R. P.; Yadav, S.; Ramasastry, S. S. V. Org. Lett. 2021, 23, 4909.
doi: 10.1021/acs.orglett.1c01671 |
[22] |
Lee, E.; Hwang, Y.; Kim, Y. B.; Kim, D.; Chang, S. J. Am. Chem. Soc. 2021, 143, 6363.
doi: 10.1021/jacs.1c02550 |
[1] | Jing Tang, Wenkun Luo, Jun Zhou. Advances in the Synthesis of Azaspiro[4.5]trienones [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3006-3034. |
[2] | Suzhen Zhang, Wenwen Zhang, Hui Yang, Qing Gu, Shuli You. Rhodium-Catalyzed Enantioselective Spiroannulation of 2-Alkenylphenols with Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2926-2933. |
[3] | Jun Lu, Qichuang Li, Renxiao Liang, Yixia Jia. Nickel-Catalyzed Intramolecular Dearomative Arylation of Pyridiniums and Quinoliniums [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1875-1882. |
[4] | Mingyang Pang, Honghong Chang, Zhang Feng, Juan Zhang. Recent Advances in Transition-Metal-Catalyzed Tandem Dearomatization of Indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1271-1291. |
[5] | Peng Liu, Fuming Zhong, Lihao Liao, Weiqiang Tan, Xiaodan Zhao. Progress in the Construction of Spirocyclohexadienones via Alkyne-Involving Dearomatization [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4019-4035. |
[6] | Huaiyuan Zhang, Nuo Xu, Rongping Tang, Xingli Shi. Recent Advances in Asymmetric Dearomatization Reactions Induced by Chiral Hypervalent Iodine Reagents [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3784-3805. |
[7] | Rong Wang, Lichen Xu, Yi Lu, Bo Jiang, Wenjuan Hao. Sc(OTf)3-Catalyzed Dearomatization of Indoles for the Synthesis of 3,3'-Bisindoles [J]. Chinese Journal of Organic Chemistry, 2021, 41(4): 1582-1590. |
[8] | Qiang Yan, Rong Fan, Binbin Liu, Shuaisong Su, Bo Wang, Tuanli Yao, Jiajing Tan. Recent Progress in Aryne Participated Dearomatization Reactions [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 455-470. |
[9] | Yuchao Wang, Jinbiao Liu, Guanyinsheng Qiu, Yu Yang, Hongwei Zhou. Metal-Free Selenizative spiro-Tricyclization of N-Hydroxylethyl-N-arylpropiolamides [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4798-4807. |
[10] | Jun Lu, Renxiao Liang, Yixia Jia. Copper-Catalyzed Intramolecular Dearomative Arylation of Naphthylamines [J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 4007-4013. |
[11] | Yinjun Huang, Jinshan Li, Shen Li, Junan Ma. Cobalt-Catalyzed Aerobic Oxidative Dearomatization of 2-Aryl Indoles and in situ [3+2] Annulation with Enamides [J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 4028-4038. |
[12] | Xu-Xu Qing-Feng, Huang Xian-Yun, Zhang Xiao, You Shu-Li. Synthesis of 1,2-Dihydroquinolines by Reduction of Quinolines with Sodium Cyanoborohydride [J]. Chinese Journal of Organic Chemistry, 2020, 40(10): 3446-3451. |
[13] | Li Kunyu, Bai Lu, Luan Xinjun. Pd-Catalyzed Dearomative Spirocyclization of Bromophenols via[2+2+1] Strategy [J]. Chinese Journal of Organic Chemistry, 2019, 39(8): 2211-2217. |
[14] | Wang Yonggang, Liu Renrong, Gao Jianrong, Jia Yixia. Palladium-Catalyzed Dearomative Decarboxylative Alkynylation of Indoles with Acetylenecarboxylic Acids [J]. Chin. J. Org. Chem., 2017, 37(3): 691-697. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||