Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (4): 1069-1093.DOI: 10.6023/cjoc202308024 Previous Articles Next Articles
Special Issue: 有机光催化合辑
REVIEWS
沈都益a,b,*(), 李玲慧a, 靳鸽a, 梁雨佳a, 张欣慧a, 公培伟a, 张范军a,*(), 晁绵冉a,*()
收稿日期:
2023-08-27
修回日期:
2023-11-03
发布日期:
2023-11-15
基金资助:
Duyi Shena,b(), Linghui Lia, Ge Jinga, Yujia Lianga, Xinhui Zhanga, Peiwei Gonga, Fanjun Zhanga(), Mianran Chaoa()
Received:
2023-08-27
Revised:
2023-11-03
Published:
2023-11-15
Contact:
E-mail: Supported by:
Share
Duyi Shen, Linghui Li, Ge Jing, Yujia Liang, Xinhui Zhang, Peiwei Gong, Fanjun Zhang, Mianran Chao. Advances in Flavin-Inspired Photocatalytic Oxidations Involving Single Electron Transfer Process[J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1069-1093.
[1] |
(a) Holmberg-Douglas N.; Nicewicz D. A. Chem. Rev. 2022, 122, 1925.
doi: 10.1021/acs.chemrev.1c00311 |
(b) Yu X.-Y.; Chen J.-R.; Xiao W.-J. Chem. Rev. 2021, 121, 506.
doi: 10.1021/acs.chemrev.0c00030 |
|
(c) Cheung K. P. S.; Sarkar S.; Gevorgyan V. Chem. Rev. 2022, 122, 1543.
doi: 10.1021/acs.chemrev.1c00403 |
|
(d) Teegardin K.; Day J. I.; Chan J.; Weaver J. Org. Process Res. Dev. 2016, 20, 1156.
doi: 10.1021/acs.oprd.6b00101 |
|
(e) Shaw M. H.; Twilton J.; MacMillan D. W. C. J. Org. Chem. 2016, 81, 6898.
doi: 10.1021/acs.joc.6b01449 |
|
[2] |
(a) Srivastava V.; Singh P. K.; Tivaria S.; Singh P. P. Org. Chem. Front. 2022, 9, 1485.
doi: 10.1039/D1QO01602D |
(b) Pitre S. P.; Overman L. E. Chem. Rev. 2022, 122, 1717.
doi: 10.1021/acs.chemrev.1c00247 |
|
(c) Sun C.-L.; Shi Z.-J. Chem. Rev. 2014, 114, 9219.
doi: 10.1021/cr400274j |
|
[3] |
(a) Romero N. A.; Nicewicz D. A. Chem. Rev. 2016, 116, 10075.
doi: 10.1021/acs.chemrev.6b00057 |
(b) Sideri I. K.; Voutyritsa E.; Kokotos C. G. Org. Biomol. Chem. 2018, 16, 4596.
doi: 10.1039/C8OB00725J |
|
(c) Fukuzumi S.; Ohkubo K. Org. Biomol. Chem. 2014, 12, 6059.
doi: 10.1039/C4OB00843J |
|
[4] |
(a) Lechner H.; Oberdorfer G. ChemBioChem 2022, 23, e202100599.
doi: 10.1002/cbic.v23.13 |
(b) Liang Y.; Wei J.; Qiu X.; Jiao N. Chem. Rev. 2018, 118, 4912.
doi: 10.1021/acs.chemrev.7b00193 |
|
[5] |
(a) Romero E.; Castellanos J. R. G.; Gadda G.; Fraaije M. W.; Mattevi A. Chem. Rev. 2018, 118, 1742.
doi: 10.1021/acs.chemrev.7b00650 |
(b) Silva E.; Edwards A. M. Flavins: Photochemistry and Photobiology, The Royal Society of Chemistry, Cambridge, 2002.
|
|
[6] |
Ghisla S.; Kenney W. C.; Knappe W. R.; McIntire W.; Singer T. P. Biochemistry 1980, 19, 2537.
pmid: 6249335 |
[7] |
(a) König B.; Kümmel S.; Svobodová E.; Cibulka R. Phys. Sci. Rev. 2018, 3, 20170168.
|
(b) Cibulka R.; Fraaije M. W. Flavin-Based Catalysis: Principles and Applications, Wiley-VCH GmbH, Weinheim, 2021.
|
|
[8] |
Fukuzumi S.; Yasui K.; Suenobu T.; Ohkubo K.; Fujitsuka M.; Ito O. J. Phys. Chem. A 2001, 105, 10501.
doi: 10.1021/jp012709d |
[9] |
Emmanuel M. A.; Bender S. G.; Bilodeau C.; Carceller J. M.; DeHovitz J. S.; Fu H.; Liu Y.; Nicholls B. T.; Ouyang Y.; Page C. G.; Qiao T.; Raps F. C.; Sorigué D. R.; Sun S.-Z.; Turek-Herman J.; Ye Y.; Rivas-Souchet A.; Cao J.; Hyster T. K. Chem. Rev. 2023, 123, 5459.
doi: 10.1021/acs.chemrev.2c00767 pmid: 37115521 |
[10] |
(a) Litman Z. C.; Wang Y.; Zhao H.; Hartwig J. F. Nature 2018, 560, 355.
doi: 10.1038/s41586-018-0413-7 |
(b) Huang X.; Wang B.; Wang Y.; Jiang G.; Feng J.; Zhao H. Nature 2020, 584, 69.
doi: 10.1038/s41586-020-2406-6 |
|
(c) Harrison W.; Huang X.; Zhao H. Acc. Chem. Res. 2022, 55, 1087.
doi: 10.1021/acs.accounts.1c00719 |
|
[11] |
(a) Oelgemöller M. Chem. Rev. 2016, 116, 9664.
doi: 10.1021/acs.chemrev.5b00720 |
(b) Ding W.; Lu L.‐Q.; Xiao W.‐J. In Green Oxidation in Organic Synthesis, 1st ed., Eds.: Jiao, N.; Stahl, S. S., John Wiley & Sons Ltd., Hoboken, NJ, 2019.
|
|
[12] |
(a) Rehpenn A.; Walte A.; Storch G. Synthesis 2021, 53, 2583.
doi: 10.1055/a-1458-2419 pmid: 26077635 |
(b) de Gonzalo G.; Fraaije M. W. ChemCatChem 2013, 5, 403.
doi: 10.1002/cctc.v5.2 pmid: 26077635 |
|
(c) Iida H.; Imada Y.; Murahashi S.-I. Org. Biomol. Chem. 2015, 13, 7599.
doi: 10.1039/c5ob00854a pmid: 26077635 |
|
(d) Cibulka R. Eur. J. Org. Chem. 2015, 2015, 915.
doi: 10.1002/ejoc.v2015.5 pmid: 26077635 |
|
[13] |
Srivastava V.; Singh P. K.; Srivastava A.; Singh P. P. RSC Adv. 2021, 11, 14251.
doi: 10.1039/D1RA00925G |
[14] |
Fukuzumi S.; kuroda S.; Tanak T. Chem. Lett. 1984, 417.
|
[15] |
Fukuzumi S.; Kuroda S.; Tanaka T. Chem. Lett. 1984, 1375.
|
[16] |
Fukuzumi S.; Kuroda S.; Tanaka T. J. Am. Chem. Soc. 1985, 107, 3020.
doi: 10.1021/ja00297a005 |
[17] |
(a) Fukuzumi S.; Kojima T. J. Biol. Inorg. Chem. 2008, 13, 321.
doi: 10.1007/s00775-008-0343-1 |
(b) Fukuzumi S.; Ohkubo K. Coord. Chem. Rev. 2010, 254, 372.
doi: 10.1016/j.ccr.2009.10.020 |
|
(c) Fukuzumi S.; Jung J.; Lee Y.-M.; Nam W. Asian J. Org. Chem. 2017, 6, 397.
doi: 10.1002/ajoc.v6.4 |
|
[18] |
Mühldorf B.; Wolf R. Chem. Commun. 2015, 51, 8425.
doi: 10.1039/C5CC00178A |
[19] |
Fukuzumi S.; Tanii K.; Tanaka T. J. Chem. Soc., Chem. Commun. 1989, 816.
|
[20] |
Mühldorf B.; Wolf R. ChemCatChem 2017, 9, 920.
doi: 10.1002/cctc.v9.6 |
[21] |
Zelenka J.; Svobodová E.; Tarábek J.; Hoskovcová I.; Bogus- chová V.; Bailly S.; Sikorski M.; Roithová J.; Cibulka R. Org. Lett. 2019, 21, 114.
doi: 10.1021/acs.orglett.8b03547 pmid: 30582822 |
[22] |
Tolba A. H.; Vávra F.; Chudoba J.; Cibulka R. Eur. J. Org. Chem. 2020, 2020, 1579.
|
[23] |
Pokluda A.; Anwar Z.; Boguschová V.; Anusiewicz I.; Skurski P.; Sikorski M.; Cibulka R. Adv. Synth. Catal. 2021, 363, 4371.
doi: 10.1002/adsc.v363.18 |
[24] |
Graml A.; Neveselý T.; Kutta R. J.; Cibulka R.; König B. Nat. Commun. 2020, 11, 3174.
doi: 10.1038/s41467-020-16909-y |
[25] |
Obertík R.; Chudoba J.; Šturala J.; Tarábek J.; Ludvíková L.; Slanina T.; König B.; Cibulka R. Chem.-Eur. J. 2022, 28, e202202487.
doi: 10.1002/chem.v28.67 |
[26] |
Lechner R.; Kümmel S.; König B. Photochem. Photobiol. Sci. 2010, 9, 1367.
doi: 10.1039/c0pp00202j |
[27] |
Taeufer T.; Cordero M. A. A.; Petrosyan A.; Surkus A.-E.; Lochbrunner S.; Pospech J. ChemPhotoChem 2021, 5, 999.
doi: 10.1002/cptc.v5.11 |
[28] |
(a) El-Hage F.; Schöll C.; Pospech J. J. Org. Chem. 2020, 85, 13853.
doi: 10.1021/acs.joc.0c01955 |
(b) Taeufer T.; Hauptmann R.; El-Hage F.; Mayer T. S.; Jiao H.; Rabeah J.; Pospech J. ACS Catal. 2021, 11, 4862.
doi: 10.1021/acscatal.0c05540 |
|
[29] |
Aleksander V. Mini-Rev. Org. Chem. 2017, 14, 204.
|
[30] |
Shen D.; Zhong F.; Li L.; Zhang H.; Ren T.; Sun C.; Wang B.; Guo M.; Chao M.; Fukuzumi S. Org. Chem. Front. 2023, 10, 2653.
doi: 10.1039/D3QO00375B |
[31] |
Düsel S. J. S.; König B. J. Org. Chem. 2018, 83, 2802.
doi: 10.1021/acs.joc.7b03260 |
[32] |
Badenock J. C. Radical Reactions of Indole In Heterocyclic Scaffolds II: Topics in Heterocyclic Chemistry, Vol. 26, Ed.: Gribble, G., Springer, Berlin, 2010.
|
[33] |
Immel J. R.; Alghafli B. M.; Ugalde A. A. R.; Bloom S. Org. Lett. 2023, 25, 3818.
doi: 10.1021/acs.orglett.3c01398 |
[34] |
(a) Weinberg D. R.; Gagliardi C. J.; Hull J. F.; Murphy C. F.; Kent C. A.; Westlake B. C.; Paul A.; Ess D. H.; McCafferty D. G.; Meyer T. J. Chem. Rev. 2012, 112, 4016.
doi: 10.1021/cr200177j pmid: 33405896 |
(b) Tyburski R.; Liu T.; Glover S. D.; Hammarström L. J. Am. Chem. Soc. 2021, 143, 560.
doi: 10.1021/jacs.0c09106 pmid: 33405896 |
|
[35] |
Adenier A.; Chehimi M. M.; Gallardo I.; Pinson J.; Vila N. Langmuir 2004, 20, 8243.
pmid: 15350099 |
[36] |
Bertolotti S. G.; Previtali C. M.; Rufs A. M.; Encinas M. V. Macromolecules 1999, 32, 2920.
doi: 10.1021/ma981246f |
[37] |
Porcal G.; Bertolotti S. G.; Previtali C. M.; Encinas M. V. Phys. Chem. Chem. Phys. 2003, 5, 4123.
doi: 10.1039/b306945a |
[38] |
Martinez-Haya R.; Miranda M. A.; Marin M. L. Eur. J. Org. Chem. 2017, 2017, 2164.
|
[39] |
Tagami T.; Arakawa Y.; Minagawa K.; Imada Y. Org. Lett. 2019, 21, 6978.
doi: 10.1021/acs.orglett.9b02567 |
[40] |
Brown D. G.; Boström J. J. Med. Chem. 2016, 59, 4443.
doi: 10.1021/acs.jmedchem.5b01409 pmid: 26571338 |
[41] |
Tolba A. H.; Krupicka M.; Chudoba J.; Cibulka R. Org. Lett. 2021, 23, 6825.
doi: 10.1021/acs.orglett.1c02391 |
[42] |
Wu M.; Jiang Q.; Tian Q.; Guo T.; Cai F.; Tang S.; Liu J.; Wang X. CCS Chem. 2022, 4, 3599.
doi: 10.31635/ccschem.022.202101621 |
[43] |
(a) Wu Y.; Zhou G.; Meng Q.; Tang X.; Liu G.; Yin H.; Zhao J.; Yang F.; Yu Z.; Luo Y. J. Org. Chem. 2018, 83, 13051.
doi: 10.1021/acs.joc.8b01710 |
(b) Luo K.; Yu X.; Chen P.; He K.; Lin J.; Jin Y. Tetrahedron Lett. 2020, 61, 151578.
doi: 10.1016/j.tetlet.2019.151578 |
|
(c) Zhang Y.; Yang X.; Tang H.; Liang D.; Wu J.; Huang D. Green Chem. 2020, 22, 22.
doi: 10.1039/C9GC03152A |
|
[44] |
Shen D.; Ren T.; Luo Z.; Sun F.; Han Y.; Chen K.; Zhang X.; Zhou M.; Gong P.; Chao M. Org. Biomol. Chem. 2023, 21, 4955.
doi: 10.1039/D3OB00663H |
[45] |
(a) Marin M. L.; Santos-Juanes L.; Arques A.; Amat A. M.; Miranda M. A. Chem. Rev. 2012, 112, 1710.
doi: 10.1021/cr2000543 |
(b) Pavanello A.; Miranda M. A.; Marin M. L. Chem. Eng. J. Adv. 2022, 11, 100296.
doi: 10.1016/j.ceja.2022.100296 |
|
[46] |
(a) Krylov I. B.; Vil’ V. A.; Terent’ev A. O. Beilstein J. Org. Chem. 2015, 11, 92.
doi: 10.3762/bjoc.11.13 pmid: 25670997 |
(b) Li M.; Hong J.; Xiao W.; Yang Y.; Qiu D.; Mo F. ChemSusChem 2020, 13, 1661.
doi: 10.1002/cssc.v13.7 pmid: 25670997 |
|
[47] |
Bloom S.; Liu C.; Kölmel D. K.; Qiao J. X.; Zhang Y.; Poss M. A.; Ewing W. R.; MacMillan D. W. C. Nat. Chem. 2018, 10, 205.
doi: 10.1038/nchem.2888 |
[48] |
Sakakibara Y.; Murakami K. ACS Catal. 2022, 12, 1857.
doi: 10.1021/acscatal.1c05318 |
[49] |
Morack T.; Metternich J. B.; Gilmour R. Org. Lett. 2018, 20, 1316.
doi: 10.1021/acs.orglett.8b00052 |
[50] |
Ramirez N. P.; König B.; Gonzalez-Gomez J. C. Org. Lett. 2019, 21, 1368.
doi: 10.1021/acs.orglett.9b00064 pmid: 30785298 |
[51] |
Ramirez N. P.; Lana-Villarreal T.; Gonzalez-Gomez J. C. Eur. J. Org. Chem. 2020, 2020, 1539.
doi: 10.1002/ejoc.201900888 |
[52] |
Zhang B.; Wu H.; Li S.; Liu Y.; Du P.; Wang Z.-G. ACS Catal. 2023, 13, 6763.
doi: 10.1021/acscatal.3c01669 |
[53] |
(a) Ji H.-F.; Shen L. J. Mol. Struct.: THEOCHEM 2008, 865, 25.
doi: 10.1016/j.theochem.2008.06.012 |
(b) Shen L.; Ji H.-F. J. Photochem. Photobiol. A 2008, 199, 119.
doi: 10.1016/j.jphotochem.2008.04.002 |
|
(c) Ji H.-F.; Shen L. J. Mol. Struct.: THEOCHEM 2008, 862, 148.
doi: 10.1016/j.theochem.2008.05.003 |
|
[54] |
Roche S. P.; Porco J. A. Jr. Angew. Chem., Int. Ed. 2011, 50, 4068.
doi: 10.1002/anie.v50.18 |
[55] |
Dockrey S. A. B.; Narayan A. R. H. Org. Lett. 2020, 22, 3712.
doi: 10.1021/acs.orglett.0c01207 pmid: 32293185 |
[56] |
Skolia E.; Gkizis P. L.; Kokotos C. G. ChemPlusChem 2022, 87, e202200008.
doi: 10.1002/cplu.v87.4 |
[57] |
(a) Dad’ová J.; Svobodová E.; Sikorski M.; König B.; Cibulka R. ChemCatChem 2012, 4, 620.
doi: 10.1002/cctc.v4.5 |
(b) Neveselý T.; Svobodová E.; Chudoba J.; Sikorski M.; Cibulka R. Adv. Synth. Catal. 2016, 358, 1654.
doi: 10.1002/adsc.v358.10 |
|
[58] |
Bouchet L. M.; Heredia A. A.; Argüello J. E.; Schmidt L. C. Org. Lett. 2020, 22, 610.
doi: 10.1021/acs.orglett.9b04384 pmid: 31887062 |
[59] |
Arakawa Y.; Mihara T.; Fujii H.; Minagawa K.; Imada Y. Chem. Commun. 2020, 56, 5661.
doi: 10.1039/D0CC01960G |
[60] |
Kim Y.; Ho S. O.; Gassman N. R.; Korlann Y.; Landorf E. V.; Collart F. R.; Weiss S. Bioconjugate Chem. 2008, 19, 786.
doi: 10.1021/bc7002499 |
[61] |
Kim J.; Li B. X.; Huang R. Y.-C.; Qiao J. X.; Ewing W. R.; MacMillan D. W. C. J. Am. Chem. Soc. 2020, 142, 21260.
doi: 10.1021/jacs.0c09926 |
[62] |
(a) Fletcher S. Org. Chem. Front. 2015, 2, 739.
doi: 10.1039/C5QO00016E |
(b) Beddoe R. H.; Andrews K. G.; Magné V.; Cuthbertson J. D.; Saska J.; Shannon-Little A. L.; Shanahan S. E.; Sneddon H. F.; Denton R. M. Science 2019, 365, 910.
doi: 10.1126/science.aax3353 |
|
[63] |
März M.; Kohout M.; Neveselý T.; Chudoba J.; Prukała D.; Niziński S.; Sikorski M.; Burdziński G.; Cibulka R. Org. Biomol. Chem. 2018, 16, 6809.
doi: 10.1039/C8OB01822G |
[64] |
(a) Yan M.; Lo J. C.; Edwards J. T.; Baran P. S. J. Am. Chem. Soc. 2016, 138, 12692.
doi: 10.1021/jacs.6b08856 pmid: 30101272 |
(b) Romero K. J.; Galliher M. S.; Pratt D. A.; Stephenson C. R. J. Chem. Soc. Rev. 2018, 47, 7851.
doi: 10.1039/c8cs00379c pmid: 30101272 |
|
[65] |
Chilamari M.; Immel J. R.; Bloom S. ACS Catal. 2020, 10, 12727.
doi: 10.1021/acscatal.0c03422 |
[66] |
(a) Lu C.; Yao S.; Han Z.; Lin W.; Wang W.; Zhang W.; Lin N. Biophys. Chem. 2000, 85, 17.
pmid: 24769501 |
(b) Chen W.; Chen J.-J.; Lu R.; Qian C.; Li W.-W.; Yu H.-Q. Bioelectrochemistry 2014, 98, 103.
doi: 10.1016/j.bioelechem.2014.03.010 pmid: 24769501 |
|
[67] |
Du P.; Shen Y.; Zhang B.; Li S.; Gao M.; Wang T.; Ding X.; Yu B.; Wang Z.-G.; Xu F.-J. Adv. Sci. 2023, 10, 2206851.
doi: 10.1002/advs.v10.9 |
[1] | Guodong Ju, Guangyu Zhou, Yingsheng Zhao. Transition-Metal-Free Regioselective Thiocyanation of Triisopropylsilane (TIPS)-Protected Phenols [J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1327-1336. |
[2] | Wei Xu, Hongbin Zhai, Bin Cheng, Taimin Wang. Visible Light-Induced Pd-Catalyzed Heck Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3035-3054. |
[3] | Xiaona Yang, Hongyu Guo, Rong Zhou. Progress in Visible-Light Promoted Transformations of Organosilicon Compounds [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2720-2742. |
[4] | Geyang Song, Dong Xue. Research Progress on Light-Promoted Transition Metal-Catalyzed C-Heteroatom Bond Coupling Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2275-2299. |
[5] | Liwen Ma, Xiaoye Wei, Zilin Zhao, Ang Zhao, Xiangwen Deng, Bingnan Huo, Gang Ma, Chunfang Zhang. Theoretical Study on the Catalytic Mechanism of Copper with Various Valence for the Terminal Alkyne Coupling Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1811-1819. |
[6] | Weiguo Yu, Lingna Wang, Xiaocong Yu, Shuping Luo. Fluorescent Dye/Nickel Synergistic Catalytic Decarboxylative Carbonylation Reaction [J]. Chinese Journal of Organic Chemistry, 2022, 42(4): 1216-1223. |
[7] | Wen-Chang Peng, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Folding and Aggregation of Oligoviologens in Water and Cucurbit[n]uril (n=7, 8) Modulation [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 863-870. |
[8] | Shi Dunfa, Wang Lu, Xia Chungu, Liu Chao. Recent Advances in Visible-Light-Promoted Transformation of Alkyl Boron Compounds [J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3605-3619. |
[9] | Zhang Xuewen, Li Pengfei, Yuan Yu, Jia Xiaodong. Synthesis of Quinoline Derivatives Containing Lactone Structure Promoted by Radical Cation Salt [J]. Chin. J. Org. Chem., 2018, 38(9): 2435-2442. |
[10] | Hou Wentao, Jia Xiaodong. Recent Progress in Radical Cation Salts Promoted Chemical Transformations [J]. Chin. J. Org. Chem., 2018, 38(5): 999-1008. |
[11] | Kong Lichun, Zhou Yulu, Luo Fang, Zhu Gangguo. Recent Advances on Oxidative Radical Addition to Aldehydes [J]. Chin. J. Org. Chem., 2018, 38(11): 2858-2865. |
[12] | Ruan Liheng, Dong Zhencheng, Chen Chunxin, Wu Shuang, Sun Jing. Recent Progress on the Nickel/Photoredox Dual Catalysis [J]. Chin. J. Org. Chem., 2017, 37(10): 2544-2554. |
[13] | Dong Chao, Tan Guanghui, Jin Yingxue. Synthesis of Tricyclic Isoindole Cyclic Peptide Based on Photoinduced Single Electron Trasfer Reaction [J]. Chin. J. Org. Chem., 2014, 34(3): 578-583. |
[14] | Zhang Yong, Wang Qiang, Li Wei, Zhang Jing, Xia Minghui, Chen Shiming, Chen Xuemei. Thioflavin T-Based Fluorescent Probe for Visual Detection of Hg2+ [J]. Chin. J. Org. Chem., 2014, 34(2): 403-408. |
[15] | Liang Boying, Jin Yingxue, Yu Shasha, Qu Fengyu, Tan Guanghui. Synthesis of Thiacrown Ether and Nitrogen Crown Ether by Photoinduced Single Electron Transfer Reaction [J]. Chin. J. Org. Chem., 2013, 33(9): 1950-1954. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||