Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (4): 1045-1068.DOI: 10.6023/cjoc202310003 Previous Articles Next Articles
REVIEWS
收稿日期:
2023-10-05
修回日期:
2023-11-28
发布日期:
2023-12-08
基金资助:
Received:
2023-10-05
Revised:
2023-11-28
Published:
2023-12-08
Contact:
E-mail: Supported by:
Share
Chen-Long Li, Zhi-Xiang Yu. Progress in Transition-Metal-Catalyzed Carbonylative Cycloadditions Using Carbon Monoxide[J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1045-1068.
[1] |
Jiao L.; Yu Z.-X. J. Org. Chem. 2013, 78, 6842.
doi: 10.1021/jo400609w pmid: 23758406 |
[2] |
Gao Y.; Fu X.-F.; Yu Z.-X. Top. Curr. Chem. 2014, 346, 195.
|
[3] |
Chen P.-H.; Billett B. A.; Tsukamoto T.; Dong G. ACS Catal. 2017, 7, 1340.
doi: 10.1021/acscatal.6b03210 |
[4] |
Fumagalli G.; Stanton S.; Bower J. F. Chem. Rev. 2017, 117, 9404.
doi: 10.1021/acs.chemrev.6b00599 pmid: 28075115 |
[5] |
Liu J.; Liu R.; Wei Y.; Shi M. Trends Chem. 2019, 1, 779.
doi: 10.1016/j.trechm.2019.06.012 |
[6] |
Wang J.; Blaszczyk S. A.; Li X.; Tang W. Chem. Rev. 2021, 121, 110.
doi: 10.1021/acs.chemrev.0c00160 |
[7] |
Zhang Q.; Kang J.; Wang Y. ChemCatChem 2010, 2, 1030.
doi: 10.1002/cctc.v2:9 |
[8] |
Shahabuddin M.; Alam M. T.; Krishna B. B.; Thallada Bhaskar T.; Perkins G. Bioresour. Technol. 2020, 312, 123596.
doi: 10.1016/j.biortech.2020.123596 |
[9] |
dos Santos R. G.; Alencar A. C. Int. J. Hydrogen Energy 2020, 45, 18114.
doi: 10.1016/j.ijhydene.2019.07.133 |
[10] |
Franke R.; Selent D.; Börner A. Chem. Rev. 2012, 112, 5675.
doi: 10.1021/cr3001803 |
[11] |
Wu X.-F.; Fang X.; Wu L.; Jackstell R.; Neumann H.; Beller M. Acc. Chem. Res. 2014, 47, 1041.
doi: 10.1021/ar400222k |
[12] |
Wu L.; Liu Q.; Jackstell R.; Bellerm M. Angew. Chem., Int. Ed. 2014, 53, 6310.
doi: 10.1002/anie.v53.25 |
[13] |
Yin Z.; Wang Z.; Wu X.-F. Chin. J. Org. Chem. 2019, 39, 573. (in Chinese)
doi: 10.6023/cjoc201809004 |
(尹志平, 王泽超, 吴小锋, 有机化学, 2019, 39, 573.)
doi: 10.6023/cjoc201809004 |
|
[14] |
Feng T.; Du J.; Yan W.; Li X.; Gao W.; Chang H.; Wei W. Chin. J. Org. Chem. 2019, 39, 1197. (in Chinese)
doi: 10.6023/cjoc201811035 |
(冯涛, 杜佳, 闫文静, 李兴, 高文超, 常宏宏, 魏文珑, 有机化学, 2019, 39, 1197.)
doi: 10.6023/cjoc201811035 |
|
[15] |
Wang P.; Yang D.; Liu H. Chin. J. Org. Chem. 2021, 41, 3448. (in Chinese)
doi: 10.6023/cjoc202104060 |
(王鹏, 杨妲, 刘欢, 有机化学, 2021, 41, 3448.)
doi: 10.6023/cjoc202104060 |
|
[16] |
Wang Y.; Yu Z.-X. Acc. Chem. Res. 2015, 48, 2288.
doi: 10.1021/acs.accounts.5b00037 |
[17] |
Song W.; Blaszczyk S. A.; Liu J.; Wang S.; Tang W. Org. Biomol. Chem. 2017, 15, 7490.
doi: 10.1039/C7OB01000A |
[18] |
Sato H.; Turnbull B. W. H.; Fukaya K.; Krische M. J. Angew. Chem., Int. Ed. 2018, 57, 3012.
doi: 10.1002/anie.v57.12 |
[19] |
Doerksen R. S.; Hodík T.; Hu G.; Huynh N. O.; Shuler W. G.; Krische M. J. Chem. Rev. 2021, 121, 4045.
doi: 10.1021/acs.chemrev.0c01133 pmid: 33576620 |
[20] |
Wang L.-N.; Yu Z.-X. Chin. J. Org. Chem. 2020, 40, 3536. (in Chinese)
doi: 10.6023/cjoc202010025 |
(王路宁, 余志祥, 有机化学, 2020, 40, 3536.)
doi: 10.6023/cjoc202010025 |
|
[21] |
Trost B. M. Angew. Chem., Int. Ed. Engl. 1995, 90, 259.
|
[22] |
Sheldon R. A. Pure Appl. Chem. 2000, 72, 1233.
doi: 10.1351/pac200072071233 |
[23] |
Wender P. A.; Miller B. L. In Organic Synthesis: Theory & Applications, Vol. 2, Ed.: Hudlicky, T., JAI, Greenwich, 1993, p. 27.
|
[24] |
Wender P. A.; Handy S. T.; Wright D. L. Chem. Ind. (Chichester, U. K.) 1997, 765.
|
[25] |
Wender P. A.; Bi F. C.; Gamber G. G.; Gosselin F.; Hubbard R. D.; Scanio M. J. C.; Sun R.; Williams T. J.; Zhang L. Pure Appl. Chem. 2002, 74, 25.
doi: 10.1351/pac200274010025 |
[26] |
Mondal K.; Halder P.; Gopalan G.; Sasikumar P.; Radhakrishnan K. V.; Das P. Org. Biomol. Chem. 2019, 17, 5212.
doi: 10.1039/C9OB00886A |
[27] |
Hussain N.; Chhalodia A. K.; Ahmed A.; Mukherjee D. ChemistrySelect 2020, 5, 11272.
doi: 10.1002/slct.v5.36 |
[28] |
Chen Z.; Wang L.-C.; Wu X.-F. Chem. Commun. 2020, 56, 6016.
doi: 10.1039/D0CC01504K |
[29] |
Khedkar M. V.; Khan S. R.; Lambat T. L.; Chaudhary R. G.; Abdala A. A. Curr. Org. Chem. 2020, 24, 2588.
doi: 10.2174/1385272824999200622115655 |
[30] |
Tan Y.; Lang J.; Tang M.; Li J.; Mi P.; Zheng X. ChemistrySelect 2021, 6, 2343.
doi: 10.1002/slct.v6.9 |
[31] |
Alcaide B.; Almendros P. Eur. J. Org. Chem. 2004, 2004, 3377.
doi: 10.1002/ejoc.v2004:16 |
[32] |
Shibata T. Adv. Synth. Catal. 2006, 348, 2328.
doi: 10.1002/adsc.v348:16/17 |
[33] |
Park J. H.; Chang K.-M.; Chung Y. K. Coord. Chem. Rev. 2009, 253, 2461.
doi: 10.1016/j.ccr.2009.08.005 |
[34] |
Hanson B. E. Comments Inorg. Chem. 2002, 23, 289.
doi: 10.1080/02603590213137 |
[35] |
Kitagaki S.; Inagaki F.; Mukai C. Chem. Soc. Rev. 2014, 43, 2956.
doi: 10.1039/c3cs60382b pmid: 24514744 |
[36] |
Nakamura I.; Yamamoto Y. Chem. Rev. 2004, 104, 2127.
pmid: 15137788 |
[37] |
Vizer S. A.; Yerzhanov K. B.; Quntar A. A. A. A.; Dembitsky V. M. Tetrahedron 2004, 60, 5499.
doi: 10.1016/j.tet.2004.04.046 |
[38] |
Omae I. Coord. Chem. Rev. 2011, 255, 139.
doi: 10.1016/j.ccr.2010.08.001 |
[39] |
Wender P. A.; Deschamps N. M.; Gamber G. G. Angew. Chem., Int. Ed. 2003, 42, 1853.
doi: 10.1002/anie.v42:16 |
[40] |
Wender P. A.; Deschamps N. M.; Williams T. J. Angew. Chem., Int. Ed. 2004, 43, 3076.
doi: 10.1002/anie.v43:23 |
[41] |
Wender P. A.; Croatt M. P.; Deschamps N. M. J. Am. Chem. Soc. 2004, 126, 5948.
pmid: 15137743 |
[42] |
Pitcock W. H. Jr.; Lord R. L.; Baik M.-H. J. Am. Chem. Soc. 2008, 130, 5821.
doi: 10.1021/ja800856p |
[43] |
Croatt M. P.; Wender P. A. Eur. J. Org. Chem. 2010, 2010, 19.
doi: 10.1002/ejoc.v2010:1 |
[44] |
Wender P. A.; Croatt M. P.; Deschamps N. M. Angew. Chem., Int. Ed. 2006, 45, 2459.
doi: 10.1002/anie.v45:15 |
[45] |
Yuan W.; Dong X.; Shi M.; McDowell P.; Li G. Org. Lett. 2012, 14, 5582.
doi: 10.1021/ol302705z pmid: 23098194 |
[46] |
Chen G.-Q.; Shi M. Chem. Commun. 2013, 49, 698.
doi: 10.1039/C2CC37587G |
[47] |
Chen G.-Q.; Zhang X.-N.; Wei Y.; Tang X.-Y.; Shi M. Angew. Chem., Int. Ed. 2014, 53, 8492.
doi: 10.1002/anie.v53.32 |
[48] |
Chen G.-Q.; Tang X.-Y.; Shi M. Synlett 2014, 25, 2311.
doi: 10.1055/s-00000083 |
[49] |
Hoshimoto Y.; Ashida K.; Sasaoka Y.; Kumar R.; Kamikawa K.; Verdaguer X.; Riera A.; Ohashi M.; Ogoshi S. Angew. Chem., Int. Ed. 2017, 56, 8206.
doi: 10.1002/anie.201703187 pmid: 28603882 |
[50] |
Ashida K.; Hoshimoto Y.; Tohnai N.; Scott D. E.; Ohashi M.; Imaizumi H.; Tsuchiya Y.; Ogoshi S. J. Am. Chem. Soc. 2020, 142, 1594.
doi: 10.1021/jacs.9b12493 pmid: 31868355 |
[51] |
Ashida K.; Hoshimoto Y.; Ogoshi S. Synlett 2021, 32, 1537.
doi: 10.1055/s-0040-1707308 |
[52] |
Suzuki N.; Kondo T.; Mitsudo T. Organometallics 1998, 17, 766.
doi: 10.1021/om970880z |
[53] |
Wang C.; Wu Y.-D. Organometallics 2008, 27, 6152.
doi: 10.1021/om8004178 |
[54] |
Fukuyama T.; Yamaura R.; Higashibeppu Y.; Okamura T.; Ryu I.; Kondo T.; Mitsudo T. Org. Lett. 2005, 7, 5781.
doi: 10.1021/ol052291s |
[55] |
Kondo T.; Kaneko Y.; Taguchi Y.; Nakamura A.; Okada T.; Shiotsuki M.; Ura Y.; Wada K.; Mitsudo T. J. Am. Chem. Soc. 2002, 124, 6824.
doi: 10.1021/ja0260521 |
[56] |
Huang Q.; Hua R. Chem.-Eur. J. 2007, 13, 8333.
doi: 10.1002/chem.v13:29 |
[57] |
Ojima I.; Lee S.-Y. J. Am. Chem. Soc. 2000, 122, 2385.
doi: 10.1021/ja993977g |
[58] |
Bennacer B.; Fujiwara M.; Lee S.-Y.; Ojima I. J. Am. Chem. Soc. 2005, 127, 17756.
pmid: 16351104 |
[59] |
Bennacer B.; Fujiwara M.; Ojima I. Org. Lett. 2004, 6, 3589.
pmid: 15387555 |
[60] |
Kaloko J. J.; Teng Y.-H. G.; Ojima I. Chem. Commun. 2009, 4569.
|
[61] |
Chien C.-W.; Teng Y.-H. G.; Honda T.; Ojima I. J. Org. Chem. 2018, 83, 11623.
doi: 10.1021/acs.joc.8b01608 |
[62] |
Teng Y.-H. G.; Chien C.-W.; Chiou W.-H.; Honda T.; Ojima I. Front. Chem. 2018, 6, 401.
doi: 10.3389/fchem.2018.00401 |
[63] |
Salacz L.; Girard N.; Blond G.; Suffert J. Org. Lett. 2018, 20, 3915.
doi: 10.1021/acs.orglett.8b01496 pmid: 29943991 |
[64] |
Salacz L.; Girard N.; Suffert J.; Blond G. Molecules 2019, 24, 595.
doi: 10.3390/molecules24030595 |
[65] |
Church T. L.; Getzler Y. D. Y. L.; Byrne C. M.; Coates G. M. Chem. Commun. 2007, 657.
|
[66] |
Ojima I.; Athan A.; Commandeur C.; Chiou W.-H. Amidocarbonylation, Cyclohydrocarbonylation, and Related Reactions, Elsevier Inc, Philadelphia, 2013.
|
[67] |
Waser J. Top. Heterocycl. Chem. 2013, 32, 225.
|
[68] |
Kramer J. W.; Rowley J. M.; Coates G. W. Org. React. 2015, 86, 1.
|
[69] |
Couty F.; David O. R. P. Top. Heterocycl. Chem. 2016, 41, 1.
|
[70] |
Kurahashi T.; de Meijere A. Angew. Chem., Int. Ed. 2005, 44, 7881.
doi: 10.1002/anie.v44:48 |
[71] |
Hidai M.; Orisaku M.; Uchida Y. Chem. Lett. 1980, 9, 753.
doi: 10.1246/cl.1980.753 |
[72] |
Xu W.-B.; Li C.; Wang J. Chem.-Eur. J. 2018, 24, 15786.
doi: 10.1002/chem.v24.59 |
[73] |
Fukuyama T.; Higashibeppu Y.; Yamaura R.; Ryu I. Org. Lett. 2007, 9, 587.
doi: 10.1021/ol062807n |
[74] |
Koga Y.; Narasaka K. Chem. Lett. 1999, 28, 705.
doi: 10.1246/cl.1999.705 |
[75] |
Jiao L.; Lin M.; Zhuo L.-G.; Yu Z.-X. Org. Lett. 2010, 12, 2528.
doi: 10.1021/ol100625e pmid: 20465285 |
[76] |
Zhang G.-Y.; Lin M.; Yu Z.-X. Chem.-Asian J. 2023, 18, e202300032.
|
[77] |
Feng Y.; Yu Z.-X. J. Org. Chem. 2015, 80, 1952.
doi: 10.1021/jo502604p pmid: 25558884 |
[78] |
Bose S.; Yang J.; Yu Z.-X. J. Org. Chem. 2016, 81, 6757.
doi: 10.1021/acs.joc.6b00608 |
[79] |
Yang J.; Xu W.; Cui Q.; Fan X.; Wang L.-N.; Yu Z.-X. Org. Lett. 2017, 19, 6040.
doi: 10.1021/acs.orglett.7b02656 pmid: 29112425 |
[80] |
Zhou Y.; Qin J.-L.; Xu W.; Yu Z.-X. Org. Lett. 2022, 24, 5902.
doi: 10.1021/acs.orglett.2c02111 pmid: 35939530 |
[81] |
Wang J.; Hong B.; Hu D.; Kadonaga Y.; Tang R.; Lei X. J. Am. Chem. Soc. 2020, 142, 2238.
doi: 10.1021/jacs.9b13722 pmid: 31968171 |
[82] |
Li C.; Zhang H.; Feng J.; Zhang Y.; Wang J. Org. Lett. 2010, 12, 3082.
doi: 10.1021/ol101091r |
[83] |
Lee S. l.; Park J. H.; Chung Y. K.; Lee S.-G. J. Am. Chem. Soc. 2004, 126, 2714.
doi: 10.1021/ja039301+ |
[84] |
Zhang W.; Zhang J. Org. Lett. 2011, 13, 688.
doi: 10.1021/ol102920f |
[85] |
Liu B.-L.; Wei Y.; Shi M. Organometallics 2012, 31, 4601.
doi: 10.1021/om3004288 |
[86] |
Mazumder S.; Shang D.; Negru D. E.; Baik M.-H.; Evans P. A. J. Am. Chem. Soc. 2012, 134, 20569.
doi: 10.1021/ja305467x |
[87] |
Evans P. A.; Burnie A. J.; Negru D. E. Org. Lett. 2014, 16, 4356.
doi: 10.1021/ol501724s |
[88] |
Kim S.; Chung Y. K. Org. Lett. 2014, 16, 4352.
doi: 10.1021/ol5015224 |
[89] |
Burnie A. J.; Evans P. A. Chem. Commun. 2018, 54, 7621.
doi: 10.1039/C8CC02269K |
[90] |
Shaw M. H.; Melikhova E. Y.; Kloer D. P.; Whittingham W. G.; Bower J. F. J. Am. Chem. Soc. 2013, 135, 4992.
doi: 10.1021/ja401936c |
[91] |
Shaw M. H.; McCreanor N. G.; Whittingham W. G.; Bower J. F. J. Am. Chem. Soc. 2015, 137, 463.
doi: 10.1021/ja511335v |
[92] |
Shaw M. H.; Whittingham W. G.; Bower J. F. Tetrahedron 2016, 72, 2731.
doi: 10.1016/j.tet.2015.08.052 |
[93] |
Wang G.-W.; McCreanor N. G.; Shaw M. H.; Whittingham W. G.; Bower J. F. J. Am. Chem. Soc. 2016, 138, 13501.
doi: 10.1021/jacs.6b08608 |
[94] |
Dalling A. G.; Yamauchi T.; McCreanor N. G.; Cox L.; Bower J. F. Angew. Chem., Int. Ed. 2019, 58, 221.
doi: 10.1002/anie.201811460 pmid: 30397992 |
[95] |
Sokolova O, O.; Bower, J. F. Angew. Chem., Int. Ed. 2022, 61, e202205007.
|
[96] |
Eaton B. E.; Rollman B.; Kaduk J. A. J. Am. Chem. Soc. 1992, 114, 6245.
doi: 10.1021/ja00041a052 |
[97] |
Sigman M. S.; Eaton B. E. J. Am. Chem. Soc. 1996, 118, 11783.
doi: 10.1021/ja962908o |
[98] |
Sigman M. S.; Kerr C. E.; Eaton B. E. J. Am. Chem. Soc. 1993, 115, 7545.
doi: 10.1021/ja00069a081 |
[99] |
Sigman M. S.; Eaton B. E.; Heise J. D.; Kubiak C. P. Organometallics 1996, 15, 2829.
doi: 10.1021/om9601716 |
[100] |
Sigman M. S.; Eaton B. E. J. Org. Chem. 1994, 59, 7488.
doi: 10.1021/jo00103a050 |
[101] |
Morimoto T.; Chatani N.; Murai S. J. Am. Chem. Soc. 1999, 121, 1758.
doi: 10.1021/ja983546i |
[102] |
Heldeweg R. F.; Hogeveen H. J. Am. Chem. Soc. 1976, 98, 6040.
doi: 10.1021/ja00435a046 |
[103] |
Matsuda T.; Tsuboi T.; Murakami M. J. Am. Chem. Soc. 2007, 129, 12596.
doi: 10.1021/ja0732779 |
[104] |
Matsuda T.; Fukuhara K.; Yonekubo N.; Oyama S. Chem. Lett. 2017, 46, 1721.
doi: 10.1246/cl.170830 |
[105] |
Murakami M.; Itami K.; Ito Y. Angew. Chem., Int. Ed. Engl. 1996, 34, 2691.
doi: 10.1002/anie.v34:23/24 |
[106] |
Murakami M.; Itami K.; Ito Y. Organometallics 1999, 18, 1326.
doi: 10.1021/om990028n |
[107] |
Murakami M.; Itami K.; Ito Y. J. Am. Chem. Soc. 1997, 119, 2950.
doi: 10.1021/ja964259m |
[108] |
Murakami M.; Itami K.; Ito Y. J. Am. Chem. Soc. 1999, 121, 4130.
doi: 10.1021/ja9839365 |
[109] |
Meng Q.; Li M.; Zhang J. J. Mol. Struct.: THEOCHEM 2005, 726, 47.
doi: 10.1016/j.theochem.2005.02.069 |
[110] |
Mazumder S.; Crandell D. W.; Lord R. L.; Baik M.-H. J. Am. Chem. Soc. 2014, 136, 9414.
doi: 10.1021/ja503427f |
[111] |
Yang Y.; Li H.-X.; Zhu T.-Y.; Zhang Z.-Y.; Yu Z.-X. J. Am. Chem. Soc. 2023, 145, 17087.
doi: 10.1021/jacs.3c03047 |
[112] |
Zhang Y.; Chen Z.; Xiao Y.; Zhang J. Chem.-Eur. J. 2009, 15, 5208.
doi: 10.1002/chem.v15:21 |
[113] |
Wang T.; Wang C.-H.; Zhang J. Chem. Commun. 2011, 47, 5578.
doi: 10.1039/C0CC05650B |
[114] |
Fukuyama T.; Ohta Y.; Brancour C.; Miyagawa K.; Ryu I.; Dhimane A. L.; Fensterbank L.; Malacria M. Chem.-Eur. J. 2012, 18, 7243.
doi: 10.1002/chem.v18.23 |
[115] |
Coskun D.; Tüzün N. Ş. J. Organomet. Chem. 2017, 851, 97.
doi: 10.1016/j.jorganchem.2017.09.017 |
[116] |
Li X.; Huang S.; Schienebeck C. M.; Shu D.; Tang W. Org. Lett. 2012, 14, 1584.
doi: 10.1021/ol300330t |
[117] |
Chen W.; Tay J.-H.; Yu X.-Q.; Pu L. J. Org. Chem. 2012, 77, 6215.
doi: 10.1021/jo3009403 pmid: 22725622 |
[118] |
Zhang Y.; Zhao G.; Pu L. Eur. J. Org. Chem. 2017, 2017, 7026.
doi: 10.1002/ejoc.v2017.47 |
[119] |
Yang J.; Zhang P.; Shen Z.; Zhou Y.; Yu Z.-X. Chem 2023, 9, 1477.
doi: 10.1016/j.chempr.2023.01.020 |
[120] |
Yang J.; Zhang P.; Shen Z.; Yu Z.-X. Chem.-Eur. J. 2023, doi: 10.1002/chem.202303407.
|
[121] |
Tian Z.-Y.; Cui Q.; Liu C.-H.; Yu Z.-X. Angew. Chem., Int. Ed. 2018, 57, 15544.
doi: 10.1002/anie.v57.47 |
[122] |
Yang Y.; Tian Z.-Y.; Li C.-L.; Yu Z.-X. J. Org. Chem. 2022, 87, 10576.
doi: 10.1021/acs.joc.2c00406 |
[123] |
Cui Q.; Tian Z.-Y.; Yu Z.-X. Chem.-Eur. J. 2021, 27, 5638.
doi: 10.1002/chem.v27.18 |
[124] |
Li C.-L.; Yang Y.; Zhou Y.; Duan Z.-C.; Yu Z.-X. J. Am. Chem. Soc. 2023, 145, 5496.
doi: 10.1021/jacs.3c00134 |
[125] |
Murakami M.; Itami K.; Ito Y. Angew. Chem., Int. Ed. 1998, 37, 3418.
doi: 10.1002/(ISSN)1521-3773 |
[126] |
Iwasuwa N.; Owada Y.; Matsuo T. Chem. Lett. 1995, 24, 115.
doi: 10.1246/cl.1995.115 |
[127] |
Owada Y.; Matsuo T.; Iwasuwa N. Tetrahedron 1997, 53, 11069.
doi: 10.1016/S0040-4020(97)00367-0 |
[128] |
Kurahashi T.; de Meijere A. Synlett 2005, 2005, 2619.
|
[129] |
Liu C.-H.; Zhuang Z.; Bose S.; Yu Z.-X. Tetrahedron 2016, 72, 2752, and references therein.
|
[130] |
Kamitani A.; Chatani N.; Morimoto T.; Murai S. J. Org. Chem. 2000, 65, 9230.
pmid: 11149877 |
[131] |
Cho S. H.; Liebeskind L. S. J. Org. Chem. 1987, 52, 2631.
doi: 10.1021/jo00388a064 |
[132] |
Jiang G.-J.; Fu X.-F.; Li Q.; Yu Z.-X. Org. Lett. 2012, 14, 692.
doi: 10.1021/ol2031526 |
[133] |
Wang L.-N.; Cui Q.; Yu Z.-X. J. Org. Chem. 2016, 81, 10165.
doi: 10.1021/acs.joc.6b01908 |
[134] |
Liu C.-H.; Yu Z.-X. Org. Biomol. Chem. 2016, 14, 5945.
doi: 10.1039/C6OB00660D |
[135] |
Zhuang Z.; Li C.-L.; Xiang Y.; Wang Y.-H.; Yu Z.-X. Chem. Commun. 2017, 53, 2158.
doi: 10.1039/C6CC09925D |
[136] |
Lin M.; Li F.; Jiao L.; Yu Z.-X. J. Am. Chem. Soc. 2011, 133, 1690.
doi: 10.1021/ja110039h pmid: 21250688 |
[137] |
Brancour C.; Fukuyama T.; Ohta Y.; Ryu I.; Dhimane A.-L.; Fensterbank L.; Malacria M. Chem. Commun. 2010, 46, 5470.
doi: 10.1039/c0cc00747a |
[138] |
Schienebeck C. M.; Song W.; Smits A. M.; Tang W. Synthesis 2015, 47, 1076.
doi: 10.1055/s-00000084 |
[139] |
Ke X.-N.; Schienebeck C. M.; Zhou C.-C.; Xu X.-F.; Tang W.-P. Chin. Chem. Lett. 2015, 26, 730.
doi: 10.1016/j.cclet.2015.03.016 |
[140] |
Shu D.; Li X.; Zhang M.; Robichaux P. J.; Tang W. Angew. Chem., Int. Ed. 2011, 50, 1346.
doi: 10.1002/anie.v50.6 |
[141] |
Shu D.; Li X.; Zhang M.; Robichaux P. J.; Guzei I. A.; Tang W. J. Org. Chem. 2012, 77, 6463.
doi: 10.1021/jo300973r |
[142] |
Zhang M.; Tang W. Org. Lett. 2012, 14, 3756.
doi: 10.1021/ol301614v pmid: 22783971 |
[143] |
Li X.; Xie H.; Fu X.; Liu J.-T.; Wang H.-Y.; Xi B.-M.; Liu P.; Xu X.; Tang W. Chem.-Eur. J. 2016, 22, 10410.
doi: 10.1002/chem.v22.30 |
[144] |
Liu J.-T.; Simmons C. J.; Xie H.; Yang F.; Zhao X.-L.; Tang Y.; Tang W. Adv. Synth. Catal. 2017, 359, 693.
doi: 10.1002/adsc.v359.4 |
[145] |
Li X.; Song W.; Tang W. J. Am. Chem. Soc. 2013, 135, 16797.
doi: 10.1021/ja408829y |
[146] |
Song W.; Li X.; Yang K.; Zhao X.-L.; Glazier D. A.; Xi B.-M.; Tang W. J. Org. Chem. 2016, 81, 2930.
doi: 10.1021/acs.joc.6b00212 |
[147] |
Fontana F.; Tron G. C.; Barbero N.; Ferrini S.; Thomas S. P.; Aggarwal V. K. Chem. Commun. 2010, 46, 267.
doi: 10.1039/B920564K |
[148] |
Murakami M.; Itami K.; Ubukata M.; Tsuji I.; Ito Y. J. Org. Chem. 1998, 63, 4.
doi: 10.1021/jo9718859 |
[149] |
Wender P. A.; Gamber G. G.; Hubbard R. D.; Zhang L. J. Am. Chem. Soc. 2002, 124, 2876.
pmid: 11902870 |
[150] |
Wegner H. A.; de Meijere A.; Wender P. A. J. Am. Chem. Soc. 2005, 127, 6530.
doi: 10.1021/ja043671w |
[151] |
Wang Y.; Wang J.; Su J.; Huang F.; Jiao L.; Liang Y.; Yang D.; Zhang S.; Wender P. A.; Yu Z.-X. J. Am. Chem. Soc. 2007, 129, 10060.
doi: 10.1021/ja072505w |
[152] |
Wang Y.; Liao W.; Wang Y.; Jiao L.; Yu Z.-X. J. Am. Chem. Soc. 2022, 144, 2624.
doi: 10.1021/jacs.1c11030 pmid: 35130434 |
[153] |
Jiao L.; Yuan C.; Yu Z.-X. J. Am. Chem. Soc. 2008, 130, 4421.
doi: 10.1021/ja7100449 pmid: 18335933 |
[154] |
Yuan C.; Jiao L.; Yu Z.-X. Tetrahedron Lett. 2010, 51, 5674.
doi: 10.1016/j.tetlet.2010.08.028 |
[155] |
Fan X.; Tang M.-X.; Zhuo L.-G.; Tu Y. Q.; Yu Z.-X. Tetrahedron Lett. 2009, 50, 155.
doi: 10.1016/j.tetlet.2008.10.023 |
[156] |
Fan X.; Zhuo L.-G.; Tu Y. Q.; Yu Z.-X. Tetrahedron 2009, 65, 4709.
doi: 10.1016/j.tet.2009.04.020 |
[157] |
Liang Y.; Jiang X.; Yu Z.-X. Chem. Commun. 2011, 47, 6659.
doi: 10.1039/c1cc11005e |
[158] |
Liang Y.; Jiang X.; Fu X.-F.; Ye S.; Wang T.; Yuan J.; Wang Y.; Yu Z.-X. Chem.-Asian J. 2012, 7, 593.
doi: 10.1002/asia.v7.3 |
[159] |
Huang F.; Yao Z.-K.; Wang Y.; Wang Y.; Zhang J.; Yu Z.-X. Chem.-Asian J. 2010, 5, 1555.
doi: 10.1002/asia.v5:7 |
[160] |
Liu J.; Zhou Y.; Zhu J.; Yu Z.-X. Org. Lett. 2021, 23, 7566.
doi: 10.1021/acs.orglett.1c02766 |
[161] |
Liu J.; Zhou Y.; Yu Z.-X. Org. Lett. 2022, 24, 1444.
doi: 10.1021/acs.orglett.1c04383 |
[162] |
Wang L.-N.; Huang Z.; Yu Z.-X. Cell Rep. Phys. Sci. 2023, 4, 101302.
|
[163] |
Wang L.-N.; Huang Z.; Yu Z.-X. Org. Lett. 2023, 25, 1732.
doi: 10.1021/acs.orglett.3c00402 |
[164] |
Wender P. A.; Gamber G. G.; Hubbard R. D.; Pham S. M.; Zhang L. J. Am. Chem. Soc. 2005, 127, 2836.
pmid: 15740103 |
[165] |
Mbaezue I. I.; Ylijoki K. E. O. Organometallics 2017, 36, 2832.
doi: 10.1021/acs.organomet.7b00323 |
[166] |
Wender P. A.; Deschamps N. M.; Sun R. Angew. Chem., Int. Ed. 2006, 45, 3957.
doi: 10.1002/anie.v45:24 |
[167] |
Kim S. Y.; Lee S. I.; Choi S. Y.; Chung Y. K. Angew. Chem., Int. Ed. 2008, 47, 4914.
doi: 10.1002/anie.v47:26 |
[168] |
McCreanor N. G.; Stanton S.; Bower J. F. J. Am. Chem. Soc. 2016, 138, 11465.
doi: 10.1021/jacs.6b07046 pmid: 27589060 |
[169] |
Wang G.-W.; Sokolova O. O.; Young T. A.; Christodoulou E. M. S.; Butts C. P.; Bower J. F. J. Am. Chem. Soc. 2020, 142, 19006.
doi: 10.1021/jacs.0c08973 |
[170] |
Wang G.-W.; Bower J. F. J. Am. Chem. Soc. 2018, 140, 2743.
doi: 10.1021/jacs.7b13087 |
[171] |
Li C.-L.; Yang Y.; Zhou Y.; Yu Z.-X. Asian J. Org. Chem. 2022, 11, e202100571.
|
[172] |
Yao Z.-K.; Li J.; Yu Z.-X. Org. Lett. 2011, 13, 134.
doi: 10.1021/ol102700m |
[173] |
Fu X.-F.; Xiang Y.; Yu Z.-X. Chem.-Eur. J. 2015, 21, 4242.
doi: 10.1002/chem.v21.11 |
[174] |
Huang Z.; Wang X.; Jin Y.; Wang Z.; Yu Z.-X. Org. Lett. 2023, 25, 8829.
doi: 10.1021/acs.orglett.3c03471 |
[175] |
Shaw M. H.; Croft R. A.; Whittingham W. G.; Bower J. F. J. Am. Chem. Soc. 2015, 137, 8054.
doi: 10.1021/jacs.5b05215 |
[176] |
Lv S.; Xu Y.; Li J. Tetrahedron 2018, 74, 6475.
doi: 10.1016/j.tet.2018.09.034 |
[177] |
Boyd O.; Wang G.-W.; Sokolova O. O.; Calow A. D. J.; Bertrand S. M.; Bower J. F. Angew. Chem., Int. Ed. 2019, 58, 18844.
doi: 10.1002/anie.v58.52 |
[178] |
Wang G.-W.; Boyd O.; Young T. A.; Bertrand S. M.; Bower J. F. J. Am. Chem. Soc. 2020, 142, 1740.
doi: 10.1021/jacs.9b12421 |
[179] |
Wu X.; Wang C.; Liu N.; Qu J.; Chen Y. Nat. Commun. 2023, 14, 6960.
doi: 10.1038/s41467-023-42716-2 |
[180] |
Yan M.; Kawamata Y.; Baran P. S. Chem. Rev. 2017, 117, 13230.
doi: 10.1021/acs.chemrev.7b00397 |
[181] |
Wiebe A.; Gieshoff T.; Möhle S.; Rodrigo E.; Zirbes M.; Wald- vogel S. R. Angew. Chem., Int. Ed. 2018, 57, 5594.
doi: 10.1002/anie.v57.20 |
[182] |
Möhle S.; Zirbes M.; Rodrigo E.; Gieshoff T.; Wiebe A.; Wald- vogel S. R. Angew. Chem., Int. Ed. 2018, 57, 6018.
doi: 10.1002/anie.v57.21 |
[183] |
Novaes L. F. T.; Liu J.; Shen Y.; Lu L.; Meinhardt J. M.; Lin S. Chem. Soc. Rev. 2021, 50, 7941.
doi: 10.1039/d1cs00223f pmid: 34060564 |
[184] |
Goddard J.-P.; Ollivier C.; Fensterbank L. Acc. Chem. Res. 2016, 49, 1924.
doi: 10.1021/acs.accounts.6b00288 |
[185] |
Staveness D.; Bosque I.; Stephenson C. R. J. Acc. Chem. Res. 2016, 49, 2295.
doi: 10.1021/acs.accounts.6b00270 |
[186] |
Shaw M. H.; Twilton J.; MacMillan D. W. C. J. Org. Chem. 2016, 81, 6898.
doi: 10.1021/acs.joc.6b01449 |
[187] |
Strieth-Kalthoff F.; James M. J.; Teders M.; Pitzer L.; Glorius F. Chem. Soc. Rev. 2018, 47, 7190.
doi: 10.1039/c8cs00054a pmid: 30088504 |
[188] |
Swords W. B.; Yoon T. P. In Specialist Periodical Reports: Photochemistry, Vol. 50, Eds.: Crespi, S.; Protti, S., Royal Society of Chemistry, Corydon, 2023, p. 428.
|
[1] | Kaijie Guo, Xinshu Fu, Jing Li, Yan Chen, Meili Hu, Xihua Du, Yuyang Xie, Yan He. Recent Advances in Transition-Metal-Catalyzed C—S Bond Activation and Transformations [J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1124-1150. |
[2] | Yan Liu, Xiaomei Wang, Lin He, Shiwu Li, Zhifei Zhao. N-Heterocyclic Carbene (NHC)-Catalyzed [3+2] Cycloaddition to Highly Diastereoselective Synthesis of Spirooxindole Dihydrofuran Fused Pyrazolone Compounds [J]. Chinese Journal of Organic Chemistry, 2024, 44(4): 1301-1310. |
[3] | Huakun Wang, Xiaolong Ren, Yining Xuan. Study of the Halide Salt Catalyzed [3+2] Cycloaddition of α,β-Epoxy Carboxylate with Isocyanate [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 251-258. |
[4] | Hongqiong Zhao, Miao Yu, Dongxue Song, Qi Jia, Yingjie Liu, Yubin Ji, Ying Xu. Progress on Decarboxylation and Hydroxylation of Carboxylic Acids [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 70-84. |
[5] | Mengzhu Li, Boying Meng, Wenjie Lan, Bin Fu. Synthesis of 2,3-Disubstituted Dihydrobenzofurans from o-Quinone Methides and Sulfur Ylides [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 195-203. |
[6] | Zuliang Chen, Yingjing Wei, Junliang Zhang. Recent Advances in Cycloaddition Reactions of Donor-Acceptor Aziridines via Carbon-Carbon Bond Cleavage [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3078-3088. |
[7] | Hu Ma, Danfeng Huang, Kehu Wang, Duoduo Tang, Yang Feng, Yuanyuan Reng, Junjiao Wang, Yulai Hu. Synthesis of 3-Trifluoromethylpyrazole Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3257-3267. |
[8] | Yi Wang, Jian Zhang, Yangzi Liu, Xiaoyan Luo, Weiping Deng. Palladium-Catalyzed Asymmetric [3+4] Cycloadditions for the Construction of Cyclohepta[b]indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2864-2877. |
[9] | Da-Lie An, Zhi-Peng Bao, Xiao-Feng Wu. Progresses on Fluorocarbon-Containing Substrates Involved Carbonylation Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2304-2312. |
[10] | Xiaojing Hu, Feixiang Guo, Runqing Zhu, Bingqi Zhou, Tao Zhang, Lizhen Fang. Synthesis of p-Alkoxy Phenol and Its Application after Dearomatization [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2239-2244. |
[11] | Guangli Xu, Jing Xu, Haidong Xu, Xiang Cui, Xingzhong Shu. Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1899-1933. |
[12] | Deliang Kong, Wen Dai, Yiling Zhao, Yilin Chen, Hongping Zhu. Study on Oxidative Cycloaddition Reactions of Amidinatoboryl-aminosilylenes toward Ketone and Diketone Molecules [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1843-1851. |
[13] | Fang Wei, Xin Yu, Qiang Xiao. Advances in C—N3 Retention Reactions Involving Organic Azides [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1365-1385. |
[14] | Chunbo Dai, Siqi Xia, Xiaoyu Chen, Limin Yang. N-Heterocyclic Carbene (NHC)-Catalyzed [4+3] Cycloaddition to Synthesize 4-Aminobenzoheptenolactons [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1084-1090. |
[15] | Haiqing Wang, Shuang Yang, Yuchen Zhang, Feng Shi. Advances in Catalytic Asymmetric Reactions Involving o-Hydroxybenzyl Alcohols [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 974-999. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||