文章编号: 1738911046258-70235000
文献标识码: A
自由基-极性交叉转化反应在天然产物全合成中的研究进展
收稿日期:2024-10-08
修回日期:2025-01-15
网络出版日期:2025-02-07
基金资助
国家自然科学基金(22061008)
国家自然科学基金(22361008)
Research Progress on the Radical-Polar Crossover Reaction in Total Synthesis of Natural Products
Received:8 Oct. 2024
Revised:15 Jan. 2025
Online:7 Feb. 2025
Fund
National Natural Science Foundation of China(22061008)
National Natural Science Foundation of China(22361008)
自由基-极性交叉转化(RPCO)是一类链接自由基中间体和离子型中间体的串联反应, 因此可以一步构建多根化学键, 进而快速提高分子复杂度. 近几十年来, 已有多个课题组利用RPCO为关键反应, 完成萜类、生物碱、木脂素和甾体等天然产物的全合成. 但目前, 与此类反应相关的综述却鲜有报道. 将RPCO反应分为还原型、氧化型以及氧化还原中性型三类, 并按照此分类逐一介绍了RPCO反应在天然产物全合成中的应用.
关键词: 天然产物全合成 ; 自由基化学 ; 串联反应 ; 自由基-极性交叉转化
龙涛 , 何述钟 , 李超 . 自由基-极性交叉转化反应在天然产物全合成中的研究进展[J]. 有机化学, 2025 , 45(3) : 748 -763 . DOI: 10.6023/cjoc202410003
Tao Long , Shuzhong He , Chao Li . Research Progress on the Radical-Polar Crossover Reaction in Total Synthesis of Natural Products[J]. Chinese Journal of Organic Chemistry, 2025 , 45(3) : 748 -763 . DOI: 10.6023/cjoc202410003
Radical-polar crossover (RPCO) reactions are a class of cascade transformations that link radical and ionic intermediates, enabling the formation of multiple chemical bonds in a single step and thereby facilitating rapid increases in molecular complexity. Over the past few decades, a number of research groups have utilized RPCO reactions as key steps in the total synthesis of natural products, including terpenoids, alkaloids, lignans, and steroids. Despite these advances, compre- hensive reviews focusing on RPCO reactions remain limited. Applications of RPCO reactions in the total synthesis of natural products are systematically highlighted according to three categories: reduction type, oxidation type, and redox neutral type.
| [1] |
(a) Romero, K. J.; Galliher, M. S.; Pratt, D. A.; Stephenson, C. R. J. Chem. Soc. Rev. 2018, 47, 7851.
(b) Plesniak, M. P.; Huang, H.-M.; Procter, D. J. Nat. Rev. Chem. 2017, 1, 0077.
(c) Hung, K.; Hu, X.-R.; Maimone, T. J. Nat. Prod. Rep. 2018, 35, 174.
(d) Smith, J. M.; Harwood, S. J.; Baran, P. S. Acc. Chem. Res. 2018, 51, 1807.
(e) Pitre, S. P.; Weires, N. A.; Overman, L. E. J. Am. Chem. Soc. 2019, 141, 2800.
(f) Galliher, M. S.; Roldan, B. J.; Stephenson, C. R. J. Chem. Soc. Rev. 2021, 50, 10044.
(g) Pitre, S. P.; Overman, L. E. Chem. Rev. 2022, 122, 1717.
(h) Huang, H.-H.; Garduño-Castro, M. H.; Procter, D. J. Chem. Soc. Rev. 2019, 48, 4626.
(i) Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505.
|
| [2] |
Pitzer, L.; Schwarz, J. L.; Glorius, F. Chem. Sci. 2019, 10, 8285.
|
| [3] |
Goto, K.; Sudzuki, H. Bull. Chem. Soc. Jpn. 1929, 4, 220.
|
| [4] |
Yu, B.-W.; Chen, J.-Y.; Wang, Y.-P.; Cheng, K.-F.; Li, X.-Y.; Qin, G.-W. Phytochemistry 2002, 61, 439.
|
| [5] |
Dilmac, A. M.; Spuling, E.; de Meijere, A.; Bräse, S. Angew. Chem., Int. Ed. 2017, 56, 5684.
|
| [6] |
Li, F.; Samuel, S. T.; Castle, S. L. J. Am. Chem. Soc. 2009, 131, 6674.
|
| [7] |
Li, F.; Castle, S. L. Org. Lett. 2007, 9, 4033.
|
| [8] |
Ondeyka, J. G.; Helms, G. L.; Hensens, O. D.; Goetz, M. A.; Zink, D. L.; Tsipouras, A.; Shoop, W. L.; Slayton, L.; Dombrowski, A. W.; Polishook, J. D.; Ostlind, D. A.; Tsou, N. N.; Ball, R. G.; Singh, S. B. J. Am. Chem. Soc. 1997, 119, 8809.
|
| [9] |
Zou, Y.-K.; Melvin, J. E.; Gonzales, S. S.; Spafford, M. J.; Smith, A. B. J. Am. Chem. Soc. 2015, 137, 7095.
|
| [10] |
Zou, Y.-K.; Li, X.-Q.; Yang, Y.; Berritt, S.; Melvin, J.; Gonzales, S.; Spafford, M.; Smith, A. B. J. Am. Chem. Soc. 2018, 140, 9502.
|
| [11] |
Godfrey, N. A.; Schatz, D. J.; Pronin, S. V. J. Am. Chem. Soc. 2018, 140, 12770.
|
| [12] |
Bhat, S. V.; Bajqwa, B. S.; Dornauer, H.; do Scusa, N. J.; Fehlhaber, H. W. Tetrahedron Lett. 1977, 18, 1669.
|
| [13] |
Thomas, W. P.; Schatz, D. J.; George, D. T.; Pronin, S. V. J. Am. Chem. Soc. 2019, 141, 12246.
|
| [14] |
Guo, Z.; Vangapandu, S.; Sindelar, R. W.; Walker, L. A.; Sindelar, R. D. Curr. Med. Chem. 2005, 12, 173.
|
| [15] |
Thomas, W. P.; Pronin, S. V. J. Am. Chem. Soc. 2022, 144, 118.
|
| [16] |
Zhuo, J.-M.; Zhu, C.-L.; Wu, J.-B.; Li, Z.-J.; Li, C. J. Am. Chem. Soc. 2022, 144, 99.
|
| [17] |
Sun, H.-D.; Huang, S.-X.; Han, Q.-B. Nat. Prod. Rep. 2006, 23, 673.
|
| [18] |
Fujita, E.; Shibuya, M.; Nakamura, S.; Okada, Y.; Fujita, T. J. Chem. Soc., Chem. Commun. 1972, 1107.
|
| [19] |
Pan, S.-Y.; Chen, S.-C.; Dong, G.-B. Angew. Chem., Int. Ed. 2018, 57, 6333.
|
| [20] |
Cao, Z.-C.; Sun, W.-X.; Zhang, J.-F.; Zhuo, J.-M.; Yang, S.-Q.; Song, X.-C.; Ma, Y.; Lu, P.-R.; Han, T.; Li, C. Nat. Commun. 2024, 15, 6052.
|
| [21] |
Schulte, G. R.; Scheuer, P. J.; McConnell, O. J. J. Org. Chem. 1980, 45, 552.
|
| [22] |
Paquette, L. A.; Schaefer, A. G.; Springer, J. P. Tetrahedron 1987, 43, 5567.
|
| [23] |
Zhao, Q.-Q.; Song, Q.-Y.; Jiang, K.; Li, G.-D.; Wei, W.-J.; Li, Y.; Gao, K. Org. Lett. 2015, 17, 2760.
|
| [24] |
Alekseychuk, M.; Adrian, S.; Heinze, R. C.; Heretsch, P. J. Am. Chem. Soc. 2022, 144, 11574.
|
| [25] |
Callaghan, O.; Lampard, C.; Kennedy, A. R.; Murphy, J. A. J. Chem. Soc., Perkin Trans. 1 , 1999, 995.
|
| [26] |
Ackland, M. J.; Hanson, J. R.; Hitchcock, P. B. J. Chem. Soc., Perkin Trans. 1 , 1985, 843.
|
| [27] |
Cortezano-Arellano, O. C.; Quintero, L.; Sartillo-Piscil, F. J. Org. Chem. 2015, 80, 2601.
|
| [28] |
Huang, Z.; Lumb, J. P. Nat. Chem. 2021, 13, 24.
|
| [29] |
Carroll-Pöhls, M.; Lumb, J. P. ChemCatChem 2024, 16, e202301290.
|
/
| 〈 |
|
〉 |