化学学报 ›› 2013, Vol. 71 ›› Issue (09): 1201-1224.DOI: 10.6023/A13030278 上一篇    下一篇

综述

通过“点击化学”对石墨烯和氧化石墨烯进行功能化改性

来常伟, 孙莹, 杨洪, 张雪勤, 林保平   

  1. 东南大学化学化工学院 南京 211189
  • 投稿日期:2013-03-14 发布日期:2013-05-24
  • 通讯作者: 林保平,E-mail:lbp@seu.edu.cn;Tel.:025-52090616 E-mail:lbp@seu.edu.cn
  • 基金资助:

    项目受国家自然科学基金(No. 21002012)和江苏省自然科学基金(Nos. BK2011588, BY2011153)资助.

The Functionalization of Graphene and Graphene Oxide via Click Chemistry

Lai Changwei, Sun Ying, Yang Hong, Zhang Xueqin, Lin Baoping   

  1. College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189
  • Received:2013-03-14 Published:2013-05-24
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No. 21002012) and the Jiangsu Provincial Natural Science Foundation (Nos. BK2011588, BY2011153).

点击化学具有操作简单方便、灵活高效等特点, 在石墨烯的功能化改性上具有极其重要的应用. 本工作针对点击化学对石墨烯和氧化石墨烯功能化改性方面进行了综述. 将石墨烯点击功能化改性方法分为两种情况: 共价键结合的点击功能化改性和非共价键作用的点击功能化改性, 其中共价键结合又可细分为边缘点击功能化改性和表面点击功能化改性. 首先, 本工作对石墨烯点击功能化改性的反应过程和反应条件及其研究方法作了详细的归类和系统的总结. 一方面, 在石墨烯点击功能化改性的分类上包括: 氧化石墨烯边缘点击, 氧化石墨烯表面点击, 石墨烯表面点击, 石墨烯表面经过Diels-Alder[4+2]的点击反应, 以及通过非共价键作用的π-π堆积之后的点击反应; 另一方面, 在点击反应的合成路线上, 详细列出了对石墨烯或者氧化石墨烯进行炔基化或者叠氮基化以及功能化分子进行相应地叠氮基化或者炔基化的连接方法和反应条件, 通过点击反应将两部分连接起来, 并指出石墨烯功能化复合物的功能特性和应用前景. 对这部分工作进行列表总结, 然后作图列出石墨烯和氧化石墨烯的点击功能化反应的具体分类和反应过程. 另外, 本工作列表总结了IR, Raman, UV, 1H NMR, 13C NMR, XPS, XRD, AFM, TEM, SEM, CV, TGA等对石墨烯和氧化石墨烯进行表征的常用方法, 指出了常见的出峰位置以及表征结果和测试目的, 并作了简要的分析和说明. 最后, 对点击化学在石墨烯和氧化石墨烯上的功能化应用作出了总结和展望.

关键词: 点击化学, 石墨烯, 氧化石墨烯, 功能化

Click chemistry has been widely applied to the functionalization of graphene due to its special properties of easy process, flexibility and high efficiency. In this paper, we have present a detailed review of the functionalization of graphene and graphene oxide via click chemistry. The functionalization methods through click chemistry can be divided into two main strategies of the covalent functionalization and the non-covalent functionalization. In addition, the former is further discussed in term of chemical bonds formed on the edge of graphene and chemical bonds formed on the surface of graphene via click chemistry. First, we provide a detailed classification and summary of the reaction process, condition and characterization of the functionalization through click chemistry. On the one hand, according to the position where the click chemistry takes place, the clicking functionalization of graphene can be classified into click reaction on the edge of the graphene oxide, click reaction on the surface of the graphene oxide, click reaction on the surface of the graphene, Diels-Alder[4+2] click reaction on the surface of the graphene, and click chemistry via π-π non-covalent functionalization. Moreover, we have presented and discussed significant research references related to the above five parts. On the other hand, the synthetic routes including the linking methods, click reaction conditions, reaction conditions of the alkynylation and azido functionalization of the graphene, graphene oxide, and the corresponding reactants have been summarized and listed. In addition, the functional properties and the potential applications of the functionalized graphene and graphene oxide are also concluded. To further clearly illustrate and make a summary of the functionalization method of graphene and graphene oxide via click chemistry in details, a table is listed and shown in the paper. Furthermore, we have elaborate the common characterizations methods including IR, Raman, UV, 1H NMR, 13C NMR, XPS, XRD, AFM, TEM, SEM, CV, TGA, and the common characterization results are analyzed and briefly discussed. At last, the potential application of click chemistry on the functionalization of graphene and graphene oxide was summarized.

Key words: click chemistry, graphene, graphene oxide, functionalization