化学学报 ›› 2023, Vol. 81 ›› Issue (4): 406-419.DOI: 10.6023/A22120513 上一篇    下一篇

综述

石墨烯纳米带的可控制备研究进展

宁聪聪a, 杨倩b,*(), 毛阿敏a, 唐梓嘉a, 金燕a, 胡宝山a,*()   

  1. a 重庆大学 化学化工学院 重庆 401331
    b 重庆科技学院 冶金与材料工程学院 重庆 401331
  • 投稿日期:2022-12-28 发布日期:2023-03-16
  • 作者简介:

    宁聪聪, 重庆大学2020级在读硕士生. 2020年毕业于江南大学, 获得学士学位. 主要从事石墨烯纳米带的生长及性质研究, 发表SCI论文1篇.

    杨倩, 博士, 助理研究员, 硕士生导师. 2013年毕业于重庆大学获学士学位, 2018年毕业于重庆大学获博士学位. 2018年~2020年在北京大学化学与分子工程学院从事博士后研究, 2021年加入重庆科技学院工作. 研究方向为二维材料的制备及其应用. 主持国家自然科学基金1项, 发表SCI论文10余篇.

    毛阿敏, 重庆大学2020级在读硕士生. 2020年毕业于重庆大学, 获得学士学位. 主要从事石墨烯的可控制备及性质应用研究.

    唐梓嘉, 重庆大学2021级在读硕士生. 2021年毕业于武汉理工大学, 获得学士学位. 主要从事石墨烯条带的可控制备及其性质研究.

    金燕, 重庆大学化学化工学院实验师, 主要从事石墨烯及其复合材料的控制制备及其应用研究, 发表SCI论文10余篇.

    胡宝山, 重庆大学化学化工学院副院长, 副教授, 重庆市引进高层次人才. 主要研究方向为碳纳米材料控制制备、功能化及其应用. 主持多个国家级和省部级项目, 发表SCI论文50余篇.

  • 基金资助:
    重庆市教委科技攻关项目(KJZD-M202000102); 国家自然科学基金(22005040); 中央高校科研业务专项基金(2021CDJQY-005)

Research Progress in Controllable Preparation of Graphene Nanoribbons

Congcong Ninga, Qian Yangb,*(), Amin Maoa, Zijia Tanga, Yan Jina, Baoshan Hua,*()   

  1. a School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331
    b School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331
  • Received:2022-12-28 Published:2023-03-16
  • Contact: * E-mail: qianyang@cqust.edu.cn; hubaoshan@cqu.edu.cn
  • Supported by:
    Science and Technology Research Project of Chongqing Education Commission(KJZD-M202000102); National Natural Science Foundation of China(22005040); Fundamental Research Funds for the Central Universities(2021CDJQY-005)

石墨烯纳米带是宽度为纳米尺度的石墨烯条带, 根据其边缘构型的不同可以分为锯齿型石墨烯纳米带和扶手型石墨烯纳米带. 纳米尺度导致的量子限域效应和边缘构型引起的边缘效应能够调节石墨烯纳米带的电子结构, 打开石墨烯的带隙. 而且, 石墨烯纳米带具有极大的长宽比和极高比例的边缘原子, 为通过结构裁剪实现功能定制提供了无限可能. 这些几何和电子结构特性使得石墨烯纳米带在电子器件等诸多领域比石墨烯具有更大的应用潜力, 因此, 石墨烯纳米带的相关研究一直是纳米材料领域的热点. 基于此, 本综述首先介绍了石墨烯纳米带的结构和性质, 全面介绍了石墨烯纳米带的制备方法, 相应的制备方法可以分为两部分: (1)自上而下法: 通过等离子体、离子束、扫描隧道显微镜和金属纳米颗粒对石墨烯和碳纳米管进行刻蚀和切割, 制备石墨烯纳米带. 该方法面临最大挑战在于如何提高刻蚀和切割精度. (2)自下而上法: 利用含碳前驱体, 如有机化合物、碳氢化合物气体以及碳化硅等, 制备石墨烯纳米带. 该方法利于实现原子精度的结构控制, 尤其是化学气相沉积法有望实现低成本、规模化制备. 最后展望石墨烯纳米带研究的挑战和前景. 我们相信, 随着材料和技术的创新发展, 石墨烯纳米带必将成为一种具有巨大应用潜力的新型功能材料.

关键词: 石墨烯纳米带, 制备, 结构, 性质, 功能化

Graphene nanoribbons (GNRs) are the ribbons of graphene with a width of nanoscale. According to the different edge configurations, the GNRs can be classified into Zigzag-edge graphene nanoribbons (ZGNRs) and Armchair-edge graphene nanoribbons (AGNRs), strongly affecting electronic structure and properties of GNRs. The triggered quantum confinement and edge effects by rationalizing the structural design can open the bandgap of GNRs. Besides, GNRs have huge length-to-width ratio and proportion of edge atoms, which provide infinite possibilities for realizing functional customization through structure tailoring. These geometric and electronic structural properties make graphene nanoribbons have more application potential than graphene in many fields such as electronic devices. Therefore, the related research of graphene nanoribbons has been a hot spot in the field of nanomaterials. This review introduces the structures and properties of graphene nanoribbons firstly, and then provides a comprehensive picture of the preparation approaches of GNRs, and the corresponding preparation methods can be divided into two parts: (1) Top-down categories: The GNRs are obtained by the etching and cutting of graphene, as well as carbon nanotubes (CNTs), with utilizing the plasma, ion beam, scanning tunneling microscope and metal nanoparticles. However, these methods are still in the stage of laboratory research, and fabrication of high quality GNRs is difficult because of lacking the processing accuracy. (2) Bottom-up categories: The GNRs can be synthesized using carbon containing precursors, e.g. organic compounds, hydrocarbon gas and SiC. The bottom-up method facilitates to prepare several nanometers-width GNRs with a certain degree of controllability, among which ultra-narrow GNRs can be fabricated using organic synthesis, and the chemical vapor deposition (CVD) method is expected to achieve the industrial production of high-quality GNRs with low-cost preparation. Finally, we discuss the challenges and prospects of the research of GNRs. We believe that GNRs will become a new structural and functional material with great application potential in numerous fields, as is catalyzed by innovative development of materials and techniques.

Key words: graphene nanoribbons, preparation, structure, property, functionalization