化学学报 ›› 2014, Vol. 72 ›› Issue (5): 521-536.DOI: 10.6023/A14020092 上一篇    下一篇

综述

介孔金属膦酸盐杂化材料研究进展

刘亚录, 朱运培, 李敏, 袁忠勇   

  1. 南开大学化学学院 先进能源材料化学教育部重点实验室 天津化学化工协同创新中心 天津 300071
  • 收稿日期:2014-02-06 出版日期:2014-05-14 发布日期:2014-04-21
  • 通讯作者: 袁忠勇 E-mail:zyyuan@nankai.edu.cn
  • 基金资助:

    项目受国家自然科学基金(No. 21073099),高等学校博士学科点专项基金(No. 20110031110016),教育部创新团队(No. IRT13022)和111计划(No. B12015)资助.

Advances in Mesoporous Metal Phosphonate Hybrid Materials

Liu Yalu, Zhu Yunpei, Li Min, Yuan Zhongyong   

  1. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071
  • Received:2014-02-06 Online:2014-05-14 Published:2014-04-21
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No. 21073099), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110031110016), the Program for Innovative Research Team in University (No. IRT13022) and the 111 project (No. B12015).

介孔金属有机膦酸盐杂化材料由于同时结合了无机和有机组分的性质,可作为一种环境友好的多功能材料而备受关注. 介孔金属有机膦酸盐中的有机和无机组分不是简单的物理混合,而是在分子尺度上的融合. 合成膦酸盐所需有机前驱体主要为有机多聚膦酸及其相应的盐和酯类化合物,种类繁多,使得各种有机官能团被均匀地引入进金属膦酸盐的骨架中,呈现多功能作用,有效地扩展了其应用领域. 本文系统地综述了介孔金属有机膦酸盐的合成及在吸附、分离、催化、生物传感和药物控释等领域应用研究进展,并对介孔金属膦酸盐材料的发展方向和应用前景进行了展望.

关键词: 介孔, 金属膦酸盐, 有机-无机杂化, 吸附, 催化

During the development of multifunctional and advanced energy materials, mesoporous organic-inorganic metal phosphonate hybrids are considered as a promising candidate for environmentally friendly materials with multifunctionalities, which have attracted much attention because of the combination of superior properties from both the organic and inorganic components. They are not just physical mixtures of organic and inorganic moieties, but regarded as nanocomposites with organic and inorganic components that are intimately mixed on a molecular level. By using organically bridged polyphos-phonic acids and their derivatives (i.e. salts and esters) as coupling molecules, the homogeneous incorporation of a considerable number of organic functional groups into the hybrid framework has been realized. Furthermore, the incorporation of mesoporosity with high surface area, adjustable pore size and large pore volume could contribute to the enhanced performances in various areas. This paper systematically reviewed the synthesis principle of the mesoporous metal phosphonates including the synthesis mechanism, mesophase adjustment, pore size control, morphological design and the crystallinity enhancement. The applications of these materials in the fields of adsorption, separation, catalysis, biosensing and controlled drug release were elaborated and the further development and the perspective of the mesoporous phosphonate were expected.

Key words: mesoporous, metal phosphonate, organic-inorganic hybrid, adsorption, catalysis