Acta Chim. Sinica ›› 2017, Vol. 75 ›› Issue (3): 307-320.DOI: 10.6023/A16110578 Previous Articles     Next Articles



王彬a, 王剑福a, 张晓菲a, 陈文杰b, 章永凡a, 黄昕a   

  1. a 福州大学化学学院 福州 350116;
    b 泉州师范学院化工与材料学院 泉州 362000
  • 收稿日期:2016-11-01 修回日期:2016-12-20 出版日期:2017-03-15 发布日期:2016-12-20
  • 通讯作者: 王彬,;Tel:0086-0591-22866154
  • 基金资助:


Theoretical Investigations on the Structures and the Chemical Bonding of NbMoSn-/0 (n=3~7) Clusters

Wang Bina, Wang Jianfua, Zhang Xiaofeia, Chen Wenjieb, Zhang Yongfana, Huang Xina   

  1. a College of Chemistry, Fuzhou University, Fuzhou 350116;
    b College of Chemical Engineering and Material, Quanzhou Normal University, Quanzhou 362000
  • Received:2016-11-01 Revised:2016-12-20 Online:2017-03-15 Published:2016-12-20
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 21301030, 21371034, 21373048 and 21603117) and the Natural Science Foundation of Fuzhou University (2012-XY-6).

Recently, transition metal sulfides (TMS) have played an important role in many catalytic reactions. In particular, they are widely used in the petrochemical industry, such as the hydrodesulfurization (HDS) and the hydrodenitrogenation (HDN) processes. In this work, density functional theory (DFT) and coupled cluster theory[CCSD(T)] calculations were used to study the niobium-mixed di-nuclear molybdenum sulfide clusters NbMoSn-/0(n=3~7). In our calculations, their ground-state structures were determined and the effects of doping metal, adjusting the sulfur content (n) and changing the charge states of clusters were discussed on the geometries, electronic structures and chemical bonding of NbMoSn-/0(n=3~7). NbMoSn-/0(n=3~7) clusters can be viewed as linking different sulfur ligands to the NbMoS2 four-membered rings. Among them, diverse poly-sulfur ligands, such as bridging S2, terminal S2 and terminal S3 groups, emerged in the sulfur-rich clusters. Generalized Koopmans' Theorem was employed to predict the vertical detachment energies (VDEs), and simulate the corresponding anionic photoelectron spectra (PES). The first VDEs (VDE1st) of NbMoSn-(n=3~6) increased gradually as a function of n, and then decreased suddenly when the sulfur content (n) reached 7. The VDE1st reached the maximum by 4.69 eV when the sulfur content equaled to 6. The driving forces (-ΔG) of the reduction reactions between NbMoSn-/0(n=3~7) and H2 were evaluated. The NbMoS7- anion with the terminal S22- group yielded the negative value of ΔG, which indicated that the reaction is thermodynamically favored even at the room temperature. We predicted that doping niobium into the molybdenum sulfides may improve the emergence of S2 group which may be helpful in producing the coordinatively unsaturated sites (CUS) under the H2/H2S atmosphere. Molecular orbital analyses are performed to improve our understanding on the structural evolution and the chemical bonding of NbMoSn-/0(n=3~7) clusters.

Key words: transition metal sulfide cluster, density functional theory, structural evolution, simulation of photoelectron spectrum