Acta Chim. Sinica ›› 2017, Vol. 75 ›› Issue (10): 933-942.DOI: 10.6023/A17060272 Previous Articles     Next Articles



王娟, 邹千里, 闫学海   

  1. 中国科学院过程工程研究所 生化工程国家重点实验室 北京 100190
  • 投稿日期:2017-06-18 发布日期:2017-09-04
  • 通讯作者: 闫学海,
  • 作者简介:王娟,2014年毕业于北京师范大学,获理学博士学位.同年加入中国科学院过程工程研究所,在生化工程国家重点实验室、闫学海课题组从事博士后工作,主要研究方向为肽分子自组装体系的设计和机理探究;邹千里,2006年毕业于北京师范大学,获学士学位;2013年毕业于中国科学院理化技术研究所,获理学博士学位.毕业后加入中国科学院过程工程研究所,在生化工程国家重点实验室任副研究员,硕士生导师.主要研究方向为功能生物分子的设计、合成及自组装光功能材料在光催化和肿瘤治疗中的应用;闫学海,2008年于中国科学院化学研究所获得博士学位,2008~2013年在德国马普胶体与界面研究所先后从事博士后和洪堡学者研究工作.2013年起任中国科学院过程工程研究所研究员,博士生导师.国家"青年千人"计划入选者,国家自然科学基金委"优秀青年"科学基金获得者,中国化学会青年工作者委员会委员.主要研究方向:生物分子组装、仿生组装和催化、生物材料和纳米药物及新型抗肿瘤治疗技术.
  • 基金资助:


Peptide Supramolecular Self-Assembly:Structural Precise Regulation and Functionalization

Wang Juan, Zou Qianli, Yan Xuehai   

  1. National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190
  • Received:2017-06-18 Published:2017-09-04
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 21522307, 21473208 and 91434103).

Biomolecular self-assembly plays a significant role for physiological function. Inspired by this, the construction of functional structures and architectures by biomolecular self-assembly has attracted tremendous attentions. Peptides can be assembled into diverse nanostructures, exhibiting important potential for biomedical and green-life technology applications. How to achieve the structural precise regulation of various nanostructures and functionalization by precise control of structures is the two key challenges in the field of peptide self-assembly. As the assembly process is a spontaneous thermodynamic and kinetic driven process, and is determined by the cooperation of various intermolecular non-covalent interactions, including hydrogen-bonding, electrostatic, π-π stacking, hydrophobic, and van der Waals interactions, the reasonable regulation of these non-covalent interactions is a critical pathway to achieve the two goals. To modulate these non-covalent interactions, one of the common used methods is to change the kinetic factors/external environment, including pH, ionic strength, and temperature, etc. These kinetic factors can effectively influence the interactions between peptides and solvents, resulting in dynamic and responsive variations in structures through multiple length scales and ultimate morphologies. However, the fatal disadvantage is the lacking of the precise regulation of assembled structures in the molecular level with consideration of both thermodynamics and kinetics. Compared with changing the external environment, the specific and precise molecular design is more favorable to achieve the structural precise regulation. The molecular structures and the component of building blocks can be rationally designed. For example, one can modulate the interactions between two or more than two building blocks by changing the physicochemical properties of each building block, enabling self-assembly and structural diversity of the final nanostructures. Furthermore, by combining peptides and other functional biomolecules (such as porphyrins), the functionalization of assembled nanostructures and architectures can be achieved more easily and flexibly. In this review, we will focus on the structural precise regulation and the functionalization of assembled peptide nanostructures. It is believed that the precise regulation of nanostructures is promising to promote the development of peptide-based materials towards green-life technology applications.

Key words: peptide, self-assembly, non-covalent interactions, structural precise regulation, functionalization