Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (1): 100-107.DOI: 10.6023/A20080374 Previous Articles Next Articles
Article
肖国鹏a, 乔韦军a, 张磊a,*(), 庆绍军b, 张财顺a, 高志贤a
投稿日期:
2020-08-17
发布日期:
2020-12-01
通讯作者:
张磊
作者简介:
基金资助:
Guopeng Xiaoa, Weijun Qiaoa, Lei Zhanga,*(), Shaojun Qingb, Caishun Zhanga, Zhixian Gaoa
Received:
2020-08-17
Published:
2020-12-01
Contact:
Lei Zhang
Supported by:
Share
Guopeng Xiao, Weijun Qiao, Lei Zhang, Shaojun Qing, Caishun Zhang, Zhixian Gao. Study on Hydrogen Production Catalytic Materials for Perovskite Methanol Steam Reforming[J]. Acta Chimica Sinica, 2021, 79(1): 100-107.
催化剂 | 比表面积/ (m 2•g –1) | 孔容/ (cm 3•g –1) | 孔径/nm |
---|---|---|---|
LaCrO 3 | 10.6 | 0.02 | 3.06 |
LaNiO 3 | 7.4 | 0.02 | 3.06 |
LaFeO 3 | 10.8 | 0.02 | 3.41 |
La 2Zr 2O 7 | 4.0 | 0.01 | 3.31 |
催化剂 | 比表面积/ (m 2•g –1) | 孔容/ (cm 3•g –1) | 孔径/nm |
---|---|---|---|
LaCrO 3 | 10.6 | 0.02 | 3.06 |
LaNiO 3 | 7.4 | 0.02 | 3.06 |
LaFeO 3 | 10.8 | 0.02 | 3.41 |
La 2Zr 2O 7 | 4.0 | 0.01 | 3.31 |
催化剂 | 比表面积/ (m 2•g –1) | 孔容/ (cm 3•g –1) | 孔径/nm | 铜比表面积/ (m 2•g cat –1) | 产氢速率 a / (mL•kg cat –1• s –1) |
---|---|---|---|---|---|
CuO/ LaCrO 3 | 12.1 | 0.03 | 3.06 | 2.1 | 665.5 |
CuO/ LaNiO 3 | 7.5 | 0.02 | 3.03 | 1.2 | 427.7 |
CuO/ LaFeO 3 | 11.5 | 0.03 | 3.86 | 1.1 | 276.6 |
CuO/ La 2Zr 2O 7 | 4.1 | 0.01 | 3.48 | 1.1 | 304.3 |
催化剂 | 比表面积/ (m 2•g –1) | 孔容/ (cm 3•g –1) | 孔径/nm | 铜比表面积/ (m 2•g cat –1) | 产氢速率 a / (mL•kg cat –1• s –1) |
---|---|---|---|---|---|
CuO/ LaCrO 3 | 12.1 | 0.03 | 3.06 | 2.1 | 665.5 |
CuO/ LaNiO 3 | 7.5 | 0.02 | 3.03 | 1.2 | 427.7 |
CuO/ LaFeO 3 | 11.5 | 0.03 | 3.86 | 1.1 | 276.6 |
CuO/ La 2Zr 2O 7 | 4.1 | 0.01 | 3.48 | 1.1 | 304.3 |
催化剂 | O ads/(O latt+O ads+O H2O) (at%) |
---|---|
CuO/LaCrO 3 | 34 |
CuO/LaNiO 3 | 31 |
CuO/LaFeO 3 | 28 |
CuO/La 2Zr 2O 7 | 27 |
催化剂 | O ads/(O latt+O ads+O H2O) (at%) |
---|---|
CuO/LaCrO 3 | 34 |
CuO/LaNiO 3 | 31 |
CuO/LaFeO 3 | 28 |
CuO/La 2Zr 2O 7 | 27 |
[1] |
Miao, S.W.; Na, Y. Chin. J. Org. Chem. 2018, 38, 575 . (in Chinese)
|
苗思文, 那永, 有机化学, 2018, 38, 575.
|
|
[2] |
He, J.Y.; Feng, H.S.; Wang, T.; Wang, T.T.; Zeng, H.P. Chin. J. Chem. 2017, 36, 31.
|
[3] |
Chen, Z.X.; Wang, T.; Sun, T.T.; Chen, Z.Y.; Sheng, T.; Hong, Y.H.; Nan, Z.A.; Zhu, J.; Zhou, Z.Y.; Xia, H.P.; Sun, S.G. Chin. J. Chem. 2018, 36, 1161.
|
[4] |
Jacobson, M.Z.; Colella, W.G.; Golden, D.M. Science 2005, 308, 1901.
|
[5] |
Dodds, P.E.; Staffell, I.; Hawkes, A.D.; Li, F.; Gruenewald, P.; McDowall, W.; Ekins, P. Int. J. Hydrogen Energy 2015, 40, 2065.
|
[6] |
Sa, S.; Silva, H.; Brandao, L.; Sousa, J.M.; Mendes, A. Appl. Catal. B-Environ. 2010, 99, 43.
|
[7] |
Holladay, J.D.; Hu, J.; King, D.L.; Wang, Y. Catal. Today 2009, 139, 244.
|
[8] |
Yang, M.; Li, S.; Chen, G. Appl. Catal. B-Environ. 2011, 101, 409.
|
[9] |
Liu, D.; Men, Y.; Wang, J.G.; Kolb, G.; Liu, X.; Wang, Y, Q.; Sun, Q, Y.Int. J. Hydrogen Energy 2016, 41, 21990.
|
[10] |
Liu, X.; Men, Y.; Wang, J.; He, R.; Wang, Y.Q. J. Power Sources 2017, 364, 341.
|
[11] |
Wu, G.S.; Wang, Y.H.; Mao, D.S.; Lu, G.Z.; Cao, Y.; Fan, K.N. Acta Chim. Sinica 2007, 65, 17 . (in Chinese)
|
吴贵升, 王宇红, 毛东森, 卢冠忠, 曹勇, 范康年, 化学学报, 2007, 65, 1757.
|
|
[12] |
Yang, S.Q.; He, J, P.; Zhang, N.; Sui, X.W.; Zhang, L.; Yang, Z.X.J. Fuel. Chem. Technol. 2018, 46, 179 . (in Chinese)
|
杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭, 燃料化学学报, 2018, 46, 179.
|
|
[13] |
Egger, D.A.; Bera, A.; Cahen, D.; Hodes, G.; Kirchartz, T.; Kronik, L.; Lovrincic, R.; Rappe, A.M.; Reichman, D.R.; Yaffe, O. Adv. Mater. 2018, 30, 1800691.
|
[14] |
Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.; Uenishi, M.; Kimura, M.; Okamoto, T.; Hamada, N. Nature 2002, 418, 164.
|
[15] |
Li, W.Z.; Kovarik, L.; Mei, D.H.; Liu, J.; Peden, C.H.F. Nat. Commun. 2013, 4, 2481.
|
[16] |
Majdi, T.; Zhu, G.Z.; Carvalho, J.; Jarvis, V.; Meinander, K.; Britten, J.F.; Botton, G.; John, S.P. Appl. Phys. Lett. 2015, 107, 241601.
|
[17] |
Ghouse, M.; Al-Musa, A.; Al-Yousef, Y.; Al-Otaibi, M.F. J. New Mater. Electrochem. Syst. 2010, 13, 99.
|
[18] |
Tang, P.S.; Sun, H.; Cao, F.; Yang, J.T.; Ni, S.L.; Chen, H.F. Adv. Mater. Res. 2011, 279, 83.
|
[19] |
John Berchmans, L.; Sindhu, R.; Angappan, S.; Augustin, C.O. Semiconductors 2011, 207, 301.
|
[20] |
Rao, K.K.; Banu, T.; Vithal, M.; Swamy, G.Y.S. K.; Kumar, K.R.Mater Lett. 2002, 54, 205.
|
[21] |
Yang, S.Q.; Zhou, F.; Liu, Y, J.; Zhang, L.; Chen, Y.; Wang, H.H.; Tian, Y.; Zhang, C.S.; Liu, D.S. Int. J. Hydrogen Energy 2019, 44, 7252.
|
[22] |
He, J.P.; Yang, Z.X.; Zhang, L.; Li, Y.; Pan, L.W. Int. J. Hydrogen Energy 2017, 42, 9930.
|
[23] |
Xiao, G.P.; Qiao, W.J.; Wang, L.B.; Zhang, L.; Zhang, J.; Wang, H.H. J. Fuel Chem. Technol. 2020, 48, 213 . (in Chinese)
|
肖国鹏, 乔韦军, 王丽宝, 张磊, 张健, 王宏浩, 燃料化学学报, 2020, 48, 213.
|
|
[24] |
Dai, X.P.; Yu, C.C. Mol. Catal. 2012, 26, 423 . (in Chinese)
|
代小平, 余长春, 分子催化, 2012, 26, 423.
|
|
[25] |
Wang, D.Z.; Feng, X.; Zhang, J.; Chen, L.; Zhang, L.; Wang, H.H.; Bai, J.; Zhang, C.S.; Zhang, Z.Y. J. Fuel. Chem. Technol. 2019, 47, 1251 . (in Chinese)
|
王东哲, 冯旭, 张健, 陈琳, 张磊, 王宏浩, 白金, 张财顺, 张政一, 燃料化学学报, 2019, 47, 1251.
|
|
[26] |
Moradi, G.R.; Khosravian, F.; Rahmanzadeh, M. Chinese J. Catal. 2012, 33, 797.
|
[27] |
Devendra, P.; Daniel, H.; Dushyant, S.; James, S. Appl. Petro. Res. 2012, 2, 27.
|
[28] |
Mickevicius, S.; Grebinskij, S.; Bondarenka, V.; Vengalisa, B.; Sliuzienea, K.; Orlowskib, B.A.; Osinniyb, V.; Drube, W. J. Alloys Compd. 2006, 423, 107.
|
[29] |
Honma, T.; Benino, Y.; Fujiwara, T.; Komatsu, T.; Sato, R.; Dimitrov, V. J. Appl. Phys. 2002, 91, 2942.
|
[30] |
Peng, X.; Omasta, T.J.; Roller, J.M.; Mustain, W.E. Front. Energy 2017, 11, 299.
|
[31] |
Wang, C.; Cheng, Q.P.; Wang, X.L.; Ma, K.; Bai, X.Q.; Tan, S.R.; Tian, Y.; Ding, T.; Zheng, L.R.; Zhang, J.; Li, X.G. Appl. Surf. Sci. 2017, 422, 932.
|
[32] |
Bennici, S.; Gervasini, A.; Ravasio, N.; Zaccheria, F. J. Phys. Chem. B 2003, 107, 5168.
|
[33] |
Das, D.; Llorca, J.; Dominguez, M.; Colussi, S.; Trovarelli, A.; Gayen, A. Int. J. Hydrogen Energy 2015, 40, 10463.
|
[34] |
Kulkarni, G.U.; Rao, C.N.R. Top Catal. 2003, 22, 183.
|
[35] |
Losev, A.; Kostov, K.; Tyuliev, G. Surf. Sci. 1989, 213, 564.
|
[36] |
Perefniguez, R.; Gonzalez-Delacruz, V.M.; Holgado, J.P.; Caballero, A. Appl. Catal. B: Environ. 2010, 93, 346.
|
[37] |
Song, Q.L.; Men, Y.; Wang, J.G.; Liu, S.; Chai, S.S.; An, W.; Wang, K.; Li, Y.Y.; Tang, Y.H. Int. J. Hydrogen Energy 2020, 45, 9592.
|
[38] |
He, J.P.; Zhang, L.; Chen, L.; Yang, Z.X.; Tong, Y.F. Chem. J. Chinese U. 2017, 38, 1822 . (in Chinese)
|
贺建平, 张磊, 陈琳, 杨占旭, 佟宇飞, 高学校化学学报, 2017, 38, 1822.
|
|
[39] |
Zhang, L.; Pan, L.W.; Ni, C.J.; Sun, T.J.; Zhao, S.S.; Wang, S.D.; Wang, A.J.; Hu, Y.K. Int. J. Hydrogen Energy 2013, 38, 4397.
|
[1] | Tong Jiao, Xue-lian Xu, Lei Zhang, You-yun Weng, Yu-bing Weng, Zhi-xian Gao. Research on CuO/CeO2-ZrO2/SiC Monolithic Catalysts for Hydrogen Production by Methanol Steam Reforming [J]. Acta Chimica Sinica, 2021, 79(4): 513-519. |
[2] | Yu Zeng, Pin Lyu, Yuejin Cai, Fujie Gao, Ou Zhuo, Qiang Wu, Lijun Yang, Xizhang Wang, Zheng Hu. Hierarchical Carbon Nanocages as Efficient Catalysts for Oxidative Coupling of Benzylamine to N-Benzylidene Benzylamine [J]. Acta Chimica Sinica, 2021, 79(4): 539-544. |
[3] | Yue Lu, Yang Ge, Manling Sui. Different Degradation Mechanism of CH3NH3PbI3 Based Perovskite Solar Cells under Ultraviolet and Visible Light Illumination [J]. Acta Chimica Sinica, 2021, 79(3): 344-352. |
[4] | Zhenyu Guo, Huanping Zhou. Research Progress of Composition and Structure Design in Perovskites for High Performance Light-emitting Diodes [J]. Acta Chimica Sinica, 2021, 79(3): 223-237. |
[5] | Shan Jiang, Huan Li. Optimization Mechanism for Operational Conditions of Biomass Liquid-Catalyst Fuel Cell [J]. Acta Chimica Sinica, 2021, 79(2): 208-215. |
[6] | Xiaomeng Zhang, Xiya Li, Wanfeng Xiong, Hongfang Li, Rong Cao. Ultrafine Platinum Nanoparticles Derived from Supramolecular Crystal for Catalytic Hydrogenation of Nitroarenes [J]. Acta Chimica Sinica, 2021, 79(2): 180-185. |
[7] | Yan Li, Jinhang Li, Leimeng Xu, Jiawei Chen, Jizhong Song. CsPbI3 Perovskite Quantum Dots: Fine Purification and Highly Efficient Light-emitting Diodes [J]. Acta Chimica Sinica, 2021, 79(1): 126-132. |
[8] | Haojie Xu, Shiguo Han, Zhihua Sun, Junhua Luo. Recent Advances of Two-dimensional Organic-Inorganic Hybrid Perovskite Ferroelectric Materials [J]. Acta Chimica Sinica, 2021, 79(1): 23-35. |
[9] | Lu Xiaoqing, Cao Shoufu, Wei Xiaofei, Li Shaoren, Wei Shuxian. Investigation on Oxygen Reduction Reaction Mechanism on S Doped Fe-NC lsolated Single Atoms Catalyst [J]. Acta Chimica Sinica, 2020, 78(9): 1001-1006. |
[10] | Zhang Lei, Ma Haiyan. Ethylene-Bridged Multi-Substituted Indenyl-Fluorenyl Zirconocene and Hafnocene Complexes: Synthesis, Structure and Catalytic Behavior for Propylene Selective Oligomerization [J]. Acta Chimica Sinica, 2020, 78(8): 778-787. |
[11] | Wu Qianye, Zhang Chenxi, Sun Kang, Jiang Hai-Long. Microwave-Assisted Synthesis and Photocatalytic Performance of a Soluble Porphyrinic MOF [J]. Acta Chimica Sinica, 2020, 78(7): 688-694. |
[12] | Shui Ziyi, He Nana, Chen Li, Zhao Wei, Chen Xi. Porous Perovskite towards Oxygen Reduction Reaction in Flexible Aluminum-Air Battery [J]. Acta Chimica Sinica, 2020, 78(6): 557-564. |
[13] | Li Zhewei, Wang Qianyue, Pu Min, Yang Zuoyin, Lei Ming. Theoretical Study on Nitrogenous Heterocyclic Assisted Aldimine Condensation [J]. Acta Chimica Sinica, 2020, 78(5): 437-443. |
[14] | Liu Jianguo, Zhang Mingyue, Wang Nan, Wang Chenguang, Ma Longlong. Research Progress of Covalent Organic Framework Materials in Catalysis [J]. Acta Chimica Sinica, 2020, 78(4): 311-325. |
[15] | Dai Mimi, Wang Jian, Li Linge, Wang Qi, Liu Meinan, Zhang Yuegang. High-performance Oxygen Evolution Catalyst Enabled by Interfacial Effect between CeO2 and FeNi Metal-organic Framework [J]. Acta Chimica Sinica, 2020, 78(4): 355-362. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||