Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (12): 1618-1628.DOI: 10.6023/A22090385 Previous Articles     Next Articles



薛晓兰a, 张洋a, 石美瑜a, 李天琳a, 黄天龙a, 戚继球a, 委福祥a, 隋艳伟a,*(), 金钟b,*()   

  1. a中国矿业大学 材料与物理学院 徐州 221116
    b南京大学 化学化工学院 介观化学教育部重点实验室 高性能高分子材料与技术教育部重点实验室 江苏省先进有机材料重点实验室 南京 210023
  • 投稿日期:2022-09-05 发布日期:2022-10-27
  • 通讯作者: 隋艳伟, 金钟
  • 作者简介:

    薛晓兰, 2015年于陕西师范大学化学化工学院获学士学位, 2020年于南京大学化学化工学院获博士学位. 2020年被聘为中国矿业大学材料与物理学院讲师. 主要研究方向为新型多价态金属离子电池电极材料的设计合成及储能机制研究.

    隋艳伟, 2003年于哈尔滨理工大学获学士学位, 2009年于哈尔滨工业大学获博士学位. 2009年被聘为中国矿业大学材料与物理学院讲师, 2016年于新西兰奥克兰大学进行访学, 2020年被聘为中国矿业大学材料与物理学院教授. 主要从事新能源材料与器件和合金材料及功能化方面的研究.

    金钟, 2003年于北京大学化学与分子工程学院获学士学位, 2008年于北京大学化学与分子工程学院获博士学位. 2008年和2010年分别于美国莱斯大学和麻省理工学院进行博士后研究. 2014年被聘为南京大学化学化工学院教授. 主要从事清洁能源转换/存储材料及器件和新型纳米材料性质调控与光电功能器件方面的研究.

  • 基金资助:
    江苏省自然科学基金青年基金项目(BK20210518); 江苏省自然科学基金青年基金项目(BK20221113); 江苏省双创博士(JSSCBS20211233); 中央高校基本科研业务费(2021QN1106); 中央高校基本科研业务费(020514380266); 中央高校基本科研业务费(020514380272); 中央高校基本科研业务费(020514380274); 国家重点研发计划项目(2017YFA0208200); 国家自然科学基金项目(22022505); 国家自然科学基金项目(21872069); 江苏省碳达峰碳中和科技创新专项资金项目(BK20220008); 南京市国际联合研发项目(202201007); 南京市国际联合研发项目(2022SX00000955); 苏州市(吴江区)姑苏科技创新创业领军人才计划项目(ZXL2021273)

Recent Progress on Organic Electrode Materials for Nonaqueous Magnesium Secondary Batteries

Xiaolan Xuea, Yang Zhanga, Meiyu Shia, Tianlin Lia, Tianlong Huanga, Jiqiu Qia, Fuxiang Weia, Yanwei Suia(), Zhong Jinb()   

  1. aSchool of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
    bKey Laboratory of Mesoscopic Chemistry of MOE, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • Received:2022-09-05 Published:2022-10-27
  • Contact: Yanwei Sui, Zhong Jin
  • Supported by:
    Natural Science Foundation of Jiangsu Province(BK20210518); Natural Science Foundation of Jiangsu Province(BK20221113); Shuangchuang Program of Jiangsu Province(JSSCBS20211233); Fundamental Research Funds for the Central Universities(2021QN1106); Fundamental Research Funds for the Central Universities(020514380266); Fundamental Research Funds for the Central Universities(020514380272); Fundamental Research Funds for the Central Universities(020514380274); National Key Research and Development Program of China(2017YFA0208200); National Natural Science Foundation of China(22022505); National Natural Science Foundation of China(21872069); Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province(BK20220008); Nanjing International Collaboration Research Program(202201007); Nanjing International Collaboration Research Program(2022SX00000955); Suzhou Gusu Leading Talent Program of Science and Technology Innovation and Entrepreneurship in Wujiang District(ZXL2021273)

Nonaqueous magnesium secondary batteries have attracted tremendous attention owing to their natural abundance, low cost, high theoretical volumetric specific capacities of 3833 mAh/cm3, and free of dendrite formation. However, the high polarity of Mg2+ ion results in the strong electrostatic interaction between Mg2+ ions and the anions of cathode materials, which makes it difficult to realize reversible insertion and de-insertion of Mg2+ ion in most cathode materials used in lithium ion batteries. At present, the research of cathode materials for magnesium secondary batteries is mainly focused on inorganic compounds. Unfortunately, such cathode materials suffer from problems of working at low current density, slow reaction kinetics, and complicated synthesis process. In comparison, organic electrode materials have been recognized as promising electrode materials for electrochemical energy storage systems because organic materials composed of naturally abundant chemical elements of C, H, O, N, S, etc., can be easily synthesized from renewable resources with low-cost at mild conditions. More importantly, organic materials with chemical diversity and structural flexibility can be purposefully synthesized. What’s more, the capacity, oxidation/reduction potentials, solubility, electron transfer rates, and mechanical properties can be regulated by introducing various groups or heteroatoms. Furthermore, compared to inorganic electrode materials with sluggish kinetics, organic electrode materials usually store ions through ion coordination mechanism, which is not limited by the type and size of ions and can be applied to different energy storage systems such as lithium ion batteries, sodium ion batteries, potassium ion batteries, multivalent-ion batteries, and supercapacitors. Herein, the recent progress of various organic- based materials for nonaqueous magnesium secondary batteries is summarized and the general redox mechanism is presented. Finally, the problems and challenges, resolution strategies and future development directions of organic electrode materials are briefly summarized and discussed.

Key words: magnesium secondary battery, theoretical volumetric specific capacity, cathode material, organic electrode material, redox mechanism