有机化学 ›› 2022, Vol. 42 ›› Issue (5): 1438-1442.DOI: 10.6023/cjoc202110005 上一篇 下一篇
研究论文
肖朵朵a, 刘海灵b, 周鹏a, 张建涛a,*(), 刘卫兵a,*()
收稿日期:
2021-10-05
修回日期:
2022-01-17
发布日期:
2022-02-10
通讯作者:
张建涛, 刘卫兵
基金资助:
Duoduo Xiaoa, Hailing Liub, Peng Zhoua, Jiantao Zhanga(), Weibing Liua()
Received:
2021-10-05
Revised:
2022-01-17
Published:
2022-02-10
Contact:
Jiantao Zhang, Weibing Liu
Supported by:
文章分享
以N,N-二甲基甲酰胺(DMF)为溶剂和二甲胺源, 发展了用于合成芳基-α-酮酰胺衍生物的烯烃双官能化反应. 该过程采用I2/叔丁基过氧化氢(TBHP)为催化氧化体系, 一系列芳基-α-酮酰胺衍生物以良好的收率合成得到.
肖朵朵, 刘海灵, 周鹏, 张建涛, 刘卫兵. I2/叔丁基过氧化氢(TBHP)促进烯烃和N,N-二甲基甲酰胺的氧化-酰胺化反应: 一种制备芳基-α-酮酰胺衍生物的简易方法[J]. 有机化学, 2022, 42(5): 1438-1442.
Duoduo Xiao, Hailing Liu, Peng Zhou, Jiantao Zhang, Weibing Liu. I2/t-Butylhydroperoxide (TBHP)-Mediated Oxo-amidation of Alkenes with N,N-Dimethylformamide: A Facile Access to Aryl-α-ketoamide Derivatives[J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1438-1442.
Entry | Peroxide (equiv.) | Base | Solvent | Yieldb/% |
---|---|---|---|---|
1 | TBHP (4.0) | Na2CO3 | DMF | 75 |
2 | TBHP (4.0) | NaHCO3 | DMF | 72 |
3 | TBHP (4.0) | t-BuOK | DMF | 70 |
4 | TBHP (4.0) | Et3N | DMF | 58 |
5 | TBHP (4.0) | DBU | DMF | 45 |
6c | TBHP (4.0) | Na2CO3 | Dioxane | 30 |
7 | TBHP (6.0) | Na2CO3 | DMF | 88 |
Entry | Peroxide (equiv.) | Base | Solvent | Yieldb/% |
---|---|---|---|---|
1 | TBHP (4.0) | Na2CO3 | DMF | 75 |
2 | TBHP (4.0) | NaHCO3 | DMF | 72 |
3 | TBHP (4.0) | t-BuOK | DMF | 70 |
4 | TBHP (4.0) | Et3N | DMF | 58 |
5 | TBHP (4.0) | DBU | DMF | 45 |
6c | TBHP (4.0) | Na2CO3 | Dioxane | 30 |
7 | TBHP (6.0) | Na2CO3 | DMF | 88 |
[1] |
(a) Fusetani, N.; Matsunaga, S.; Matsumoto, H.; Takebayashi, Y. J. Am. Chem. Soc. 1990, 112, 7053.
doi: 10.1021/ja00175a045 pmid: 24900178 |
(b) Hagihara, M.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 6570.
doi: 10.1021/ja00042a053 pmid: 24900178 |
|
(c) Li, Z.; Ortega-Vilain, A.-C.; Patil, G. S.; Chu, D.-L.; Foreman, J. E.; Eveleth, D. D.; Powers, J. C. J. Med. Chem. 1996, 39, 4089.
pmid: 24900178 |
|
(d) Muldoon, J.; Brown, S. N. Org. Lett. 2002, 4, 1043.
pmid: 24900178 |
|
(e) Arasappan, A.; Bennett, F.; Bogen, S. L.; Venkatraman, S.; Blackman, M.; Chen, K. X.; Hendrata, S.; Huang, Y.; Huelgas, R. M.; Nair, L. ACS Med. Chem. Lett. 2010, 1, 64.
doi: 10.1021/ml9000276 pmid: 24900178 |
|
(f) Stein, M. L.; Cui, H.; Beck, P.; Dubiella, C.; Voss, C.; Krüger, A.; Schmidt, B.; Groll, M. Angew. Chem., Int. Ed. 2014, 53, 1679.
doi: 10.1002/anie.201308984 pmid: 24900178 |
|
[2] |
(a) Ayitou, A. J.-L.; Jesuraj, J. L.; Barooah, N.; Ugrinov, A.; Sivaguru, J. J. Am. Chem. Soc. 2009, 131, 11314.
doi: 10.1021/ja9050586 pmid: 28872718 |
(b) Ishida, N.; Nečas, D.; Masuda, Y.; Murakami, M. Angew. Chem., Int. Ed. 2015, 54, 7418.
doi: 10.1002/anie.201502584 pmid: 28872718 |
|
(c) Witzig, R. M.; Lotter, D.; Fäseke, V. C.; Sparr, C. Chem.-Eur. J. 2017, 23, 12960.
doi: 10.1002/chem.201702471 pmid: 28872718 |
|
(d) Gu, G.; Yang, T.; Yu, O.; Qian, H.; Wang, J.; Wen, J.; Dang, L.; Zhang, X. Org. Lett. 2017, 19, 5920.
doi: 10.1021/acs.orglett.7b02912 pmid: 28872718 |
|
(e) Zhang, Z.; Zheng, D.; Wan, Y.; Zhang, G.; Bi, J.; Liu, Q.; Liu, T.; Shi, L. J. Org. Chem. 2018, 83, 1369.
doi: 10.1021/acs.joc.7b02880 pmid: 28872718 |
|
[3] |
(a) Li, D. K.; Wang, M.; Liu, J.; Zhao, Q.; Wang, L. Chem. Commun. 2013, 49, 3640.
doi: 10.1039/c3cc41188e pmid: 23752930 |
(b) Wang, H.; Guo, L. N.; Duan, X. H. Org. Biomol. Chem. 2013, 11, 4573.
doi: 10.1039/c3ob40787j pmid: 23752930 |
|
(c) Singh, R. P.; Shreeve, J. M. J. Org. Chem. 2003, 68, 6063.
doi: 10.1021/jo034487g pmid: 23752930 |
|
[4] |
(a) Semple, J. E.; Owens, T. D.; Nguyen, K.; Levy, O. E. Org. Lett. 2000, 2, 2769.
pmid: 10964361 |
(b) Yang, Z.; Zhang, Z.; Meanwell, N. A.; Kadow, J. F.; Wang, T. Org. Lett. 2002, 4, 1103.
doi: 10.1021/ol010297l pmid: 10964361 |
|
[5] |
Mupparapu, N.; Khan, S.; Battula, S.; Kushwaha, M.; Gupta, A. P.; Ahmed, Q. N.; Vishwakarma, R. A. Org. Lett. 2014, 16, 1152.
doi: 10.1021/ol5000204 pmid: 24490591 |
[6] |
Sharma, R. K.; Sharma, S.; Gaba, G.; Dutta, S. J. Mater. Sci. 2016, 51, 2121.
doi: 10.1007/s10853-015-9522-y |
[7] |
Zhang, X. B.; Wang, M.; Zhang, Y. C.; Wang, L. RSC Adv. 2013, 3, 1311.
doi: 10.1039/C2RA22116K |
[8] |
(a) Shao, J.; Huang, X.; Wang, S.; Liu, B.; Xu, B. Tetrahedron 2012, 68, 573.
doi: 10.1016/j.tet.2011.11.005 |
(b) Li, D.; Wang, M.; Liu, J.; Zhao, Q.; Wang, L. Chem. Commun. 2013, 49, 3640.
doi: 10.1039/c3cc41188e |
|
(c) Zhang, Z.; Su, J.; Zha, Z.; Wang, Z. Chem. Commun. 2013, 49, 8982.
doi: 10.1039/c3cc43685c |
|
(d) Guin, S. S.; Rout, K.; Gogoi, A.; Ali, W.; Patel, B. K. Adv. Synth. Catal. 2014, 356, 2559.
doi: 10.1002/adsc.201400011 |
|
(e) Wan, J.-P.; Lin, Y.; Cao, X.; Liu, Y.; Wei, L. Chem. Commun. 2016, 52, 1270.
doi: 10.1039/C5CC08843G |
|
[9] |
(a) McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
doi: 10.1021/cr100371y pmid: 23828735 |
(b) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076.
pmid: 23828735 |
|
[10] |
(a) Villar, A.; Hoevelmann, C. H.; Nieger, M.; Muniz, K. Chem. Commun. 2005, 26, 3304.
|
(b) Moorthy, J. N.; Senapati, K.; Singhal, N. Tetrahedron Lett. 2009, 50, 2493.
doi: 10.1016/j.tetlet.2009.03.032 |
|
(c) Reddi, R. N.; Malekar, P. V.; Sudalai, A. Org. Biomol. Chem. 2013, 11, 6477.
doi: 10.1039/c3ob41551a |
|
(d) Reddi, R. N.; Prasad, P. K.; Sudalai, A. Org. Lett. 2014, 16, 5674.
doi: 10.1021/ol5027393 |
|
[11] |
(a) Muzart, J. Tetrahedron 2009, 65, 8313.
doi: 10.1016/j.tet.2009.06.091 |
(b) Ding, S.; Jiao, N. Angew. Chem., Int. Ed. 2012, 51, 9226.
doi: 10.1002/anie.201200859 |
|
(c) Mai, W. P.; Wang, H. H.; Li, Z. C.; Yuan, J. W.; Xiao, Y. M.; Yang, L. R.; Mao, P.; Qu, L. B. Chem. Commun. 2012, 48, 10117.
doi: 10.1039/c2cc35279f |
|
(d) Zhao, Q.; Miao, T.; Zhang, X.; Zhou, W.; Wang, L. Org. Biomol. Chem. 2013, 11, 1867.
doi: 10.1039/c3ob27433k |
|
[12] |
(a) Zhang, J.; Xiao, D.; Tan, H.; Liu, W. J. Org. Chem. 2020, 85, 3929.
doi: 10.1021/acs.joc.9b03156 |
(b) Chen, C.; Li, Y.; Pan, Y.; Duan, L.; Liu, W. Org. Chem. Front. 2019, 6, 2032.
doi: 10.1039/c9qo00400a |
|
(c) Liu, W.; Chen, C.; Zhou, P.; Tan, H. Org. Lett. 2017, 19, 5830.
doi: 10.1021/acs.orglett.7b02796 |
|
(d) Chen, C.; Liu, W.; Zhou, P.; Liu, H. RSC Adv. 2017, 7, 20394.
doi: 10.1039/C7RA02298K |
|
(e) Chen, C.; Tan, H.; Liu, B.; Yue, C.; Liu, W. Org. Chem. Front. 2018, 5, 3143.
doi: 10.1039/C8QO00868J |
|
[13] |
(a) Chen, C.; Tan, L. Q.; Zhou, P. J. Saudi. Chem. Soc. 2015, 19, 327.
doi: 10.1016/j.jscs.2014.05.005 |
(b) Liu, W. B.; Chen, C.; Liu, H. L. Beilstein J. Org. Chem. 2015, 11, 1721.
doi: 10.3762/bjoc.11.187 |
|
(c) Liu, W.; Xu, S.; Chen, C.; Zhu, Z. ChemistrySelect 2016, 3, 612.
|
|
[14] |
Tan, J. J.; Zheng, T. Y.; Yu, Y. Q.; Xu, K. RSC Adv. 2017, 7, 15176.
doi: 10.1039/C7RA00352H |
[15] |
(a) Deshidi, R.; Devari, S.; Shah, B. A. Eur. J. Org. Chem. 2015, 1428.
|
(b) Nakayama, H.; Itoh, A. Tetrahedron Lett. 2007, 48, 1131.
|
|
(c) Evans, R. D. J.; Schauble, H. Synthesis 1986, 727.
|
|
[16] |
(a) Zhao, Q.; Miao, T.; Zhang, X.; Zhou, W.; Wang, L. Org. Biomol. Chem. 2013, 11, 1867.
doi: 10.1039/c3ob27433k |
(b) Zhou, M. X.; Song, Q. L. Synthesis 2014, 1853.
|
|
[17] |
(a) Wu, C. S.; Liu, R. X.; Ma, D. Y.; Luo, C. P.; Yang, L. Org. Lett. 2019, 21, 6117.
doi: 10.1021/acs.orglett.9b02264 pmid: 24634987 |
(b) Ling, J.; Zhang, J.; Zhao, Y.; Xu, Y.; Wang, H.; Lv, Y.; Ji, M.; Ma, L.; Ma, M.; Wan, X. Org. Biomol. Chem. 2016, 14, 5310.
doi: 10.1039/C6OB00873A pmid: 24634987 |
|
(c) Zhang, J.; Jiang, J.; Xu, D.; Luo, Q.; Wang, H.; Chen, J.; Li, H.; Wang, Y.; Wan, X. Angew. Chem., Int. Ed. 2015, 54, 1231.
doi: 10.1002/anie.201408874 pmid: 24634987 |
|
(d) Zhang, F.; Du, P.; Chen, J.; Wang, H.; Luo, Q.; Wan, X. Org. Lett. 2014, 16, 1932.
doi: 10.1021/ol5004687 pmid: 24634987 |
|
[18] |
Fan, W. Z.; Shi, D. Y.; Feng, B. N. Tetrahedron Lett. 2015, 56, 4638.
doi: 10.1016/j.tetlet.2015.06.021 |
[19] |
Mai, W. P.; Wang, H. H.; Li, Z. C.; Yuan, J. W.; Xiao, Y. M.; Yang, L. R.; Mao, P.; Qu, L. B. Chem. Commun. 2012, 48, 10117.
doi: 10.1039/c2cc35279f |
[20] |
Liu, F.; Cui, Y.; Dong, Y.; Xu, H. Synlett 2020, 31, 1011.
doi: 10.1055/s-0040-1707990 |
[21] |
Zhao, Q.; Miao, T.; Zhang, X.; Zhou, W.; Wang, L. Org. Biomol. Chem. 2013, 11, 1867.
doi: 10.1039/c3ob27433k |
[22] |
Urban, B.; Nagy, E.; Nagy, P.; Papp, M. Skoda-Foldes, R. J. Organomet. Chem. 2020, 918, 121287.
doi: 10.1016/j.jorganchem.2020.121287 |
[23] |
Klaus, B; Manfred, H.; Jens, W.; Petra, E.; Dieter, S.; Heinrich, L. Chem. Commun. 2010, 46, 4058.
doi: 10.1039/c0cc00079e |
[24] |
Laha, J. K.; Patel, K. V.; Satyanarayana Tummalapalli, K. S.; Hunjan, M. K. ACS Omega 2018, 3, 8787.
doi: 10.1021/acsomega.8b00894 |
[1] | 李思达, 崔鑫, 舒兴中, 吴立朋. 钛催化的烯烃制备1,1-二硼化合物[J]. 有机化学, 2024, 44(2): 631-637. |
[2] | 张建涛, 张聪, 莫诺琳, 罗佳婷, 陈莲芬, 刘卫兵. 氯仿参与的烯烃自由基加成反应的研究进展[J]. 有机化学, 2023, 43(9): 3098-3106. |
[3] | 卢凯, 屈浩琦, 陈樨, 秋慧, 郑晶, 马猛涛. 无催化剂、无溶剂条件下炔烃和烯烃与儿茶酚硼烷的硼氢化反应[J]. 有机化学, 2023, 43(6): 2197-2205. |
[4] | 陆晓雨, 孙晓梅, 钮亚琴, 王俊超, 殷文婧, 高梦婷, 刘孜, 韦正桓, 陶庭骅. 铜催化氟代丙烯酸与氧杂吖丙啶的脱羧交叉偶联反应[J]. 有机化学, 2023, 43(6): 2110-2119. |
[5] | 李思达, 舒兴中, 吴立朋. 锆、钛介导的烯烃、炔烃硼氢化[J]. 有机化学, 2023, 43(5): 1751-1760. |
[6] | 高师泉, 刘闯军, 杨俊锋, 张俊良. 钴催化的烯烃和炔烃的电化学还原偶联反应[J]. 有机化学, 2023, 43(4): 1559-1565. |
[7] | 梁志鹏, 叶浩, 张海滨, 姜国民, 吴新星. 环丁酮类腙参与的偕二氟环丙烷开环胺化反应[J]. 有机化学, 2023, 43(4): 1483-1491. |
[8] | 侯虹宇, 程元元, 陈彬, 佟振合, 吴骊珠. 光催化烯烃α-酰化反应[J]. 有机化学, 2023, 43(3): 1012-1022. |
[9] | 张妍妍, 张珠珠, 朱圣卿, 储玲玲. 镍催化不对称酰基化反应研究进展[J]. 有机化学, 2023, 43(3): 1023-1035. |
[10] | 李落墨, 杨小会. 离子转移反应的研究进展[J]. 有机化学, 2023, 43(3): 1036-1044. |
[11] | 郭萍, 周勇, 赵杰. 多取代烯烃的Z∶E高选择性合成制备[J]. 有机化学, 2023, 43(3): 855-872. |
[12] | 宋树勇, 徐森苗. 三氟甲基烯烃的选择性C-F键活化最新进展[J]. 有机化学, 2023, 43(2): 411-425. |
[13] | 朱佳洁, 万义, 袁启洋, 魏金莲, 张永强. 可见光/路易斯碱协同催化的三氟甲基取代烯烃脱氟硅化反应研究[J]. 有机化学, 2023, 43(10): 3623-3634. |
[14] | 孙伟, 朱守非. 铁系金属催化烯烃与三级硅烷的硅氢化反应研究进展[J]. 有机化学, 2023, 43(10): 3339-3351. |
[15] | 韩彪, 张瑶瑶, 陈舒晗, 赵梦鸽, 李楠, 李维双, 朱磊. 轴向嫁接型温度响应性手性salen MnIII聚合物的制备及在纯水相烯烃不对称环氧化反应中的应用[J]. 有机化学, 2023, 43(1): 244-253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||